Roco Rescue

RescueTalk

WE DO RESCUE

OSHA Warns of Engulfment Hazards

Friday, March 03, 2017

As shown in this photo, an engulfment scenario was featured at last year's Rescue Challenge. Be aware...it only takes 5 seconds for flowing grain (or other product) to engulf and trap a worker.

In 60 seconds, the worker is submerged and is in serious danger of death by suffocation. More than half of all workers engulfed die this way. Many others suffer permanent disability.

OSHA has recently issued further warnings on the dangers of working in grain or bulk storage facilities.

An "engulfment" often happens when "bridged" grain and vertical piles of stored grain collapse unexpectedly. Engulfments may occur when employees work on or near the pile or when bin augers whirl causing the grain to buckle and fall onto the worker. The density, weight and unpredictable behavior of flowing grains make it nearly impossible for workers to rescue themselves without help.

"Far too many preventable incidents continue to occur in the grain-handling industry," said Kim Stille, OSHA's regional administrator in Kansas City. "Every employee working in the grain industry must be trained on grain-handling hazards and given the tools to ensure they do not enter a bin or silo without required safety equipment. They must also take all necessary precautions - this includes using lifelines, testing the atmosphere inside a bin and turning off and locking out all powered equipment to prevent restarting before entering grain storage structures."




In 2016, OSHA has opened investigations of the following grain industry fatalities and incidents:

• March 16, 2016: A 42-year-old superintendent at Cooperative Producers Inc.'s Hayland grain-handling site in Prosser, Nebraska, suffered fatal injuries caused by an operating auger as he drew grain from a bin. OSHA cited the company on Sept. 9, 2016, for three egregious willful and three serious violations and placed the company in its Severe Violator Enforcement Program. The company has contested those citations. See news release here.
• March 22, 2016: A 21-year-old worker found himself trapped in a soybean bin, but escaped serious injury at The Farmer's Cooperative Association in Conway Springs, Kansas. Rescue crews were able to remove the worker and he was treated and released at a local hospital. On June 2, 2016, OSHA cited the company for 13 serious violations. See citations here.
• March 25, 2016: A 51-year-old employee was trapped in a grain bin at McPherson County Feeders in Marquette, Kansas. Emergency crews were able to rescue him. OSHA cited the company for four serious violations on April 14, 2016. See citations here.
• May 19, 2016: A 53-year-old male employee at Prinz Grain and Feed suffered severe injuries on May 18, 2016, as he worked in a grain bin in West Point, Nebraska. The maintenance worker was in a grain bin when a wall of corn product collapsed and engulfed him. He died of his injuries two days later.
• Sept. 1, 2016: A 59-year-old employee suffered severe injuries to his leg when the sweep auger inside a bin at Trotter Grain in Litchfield, Nebraska, caught his coveralls.
• Sept. 19, 2016: A 28-year-old employee of the Ellsworth Co-Op in Ellsworth, Kansas, had his left leg amputated when he stepped into an open auger well inside a grain bin while the auger was running.

"It is vital that we work with leaders, farmers and those employed in the grain and feed industry to increase awareness of hazards in the grain industry and discuss ways to protect workers on the job," stated an Omaha OSHA official.

We add that it’s critically important for emergency responders to be aware of the dangers they may face in bulk storage facilities. In addition to engulfment, there’s also the risk of dust explosions as well as entrapment from moving mechanical equipment.


read more 

Roco Competent Person Equipment Inspection

Wednesday, February 15, 2017

Does a competent person inspect your rescue equipment each year?

If not, you may want to consider having an independent third party perform the inspection for you. This service is offered by Roco as a stand-alone service, or it can be added to your next private training session. 

Functional Ops Check

The service includes a “sight and touch” functional inspection of hardware, nylon products (including rope, webbing, and anchoring components), harnesses, and accessory equipment (including litters and stretchers) utilized in confined space/high angle applications. The inspection will be conducted in accordance with manufacturer’s specifications and will satisfy the requirement for an annual2 inspection by a competent person.
Note: Equipment recommendations will NOT be provided by inspection personnel unless requested to do so.

Service Inspection Benefits include:

• Certified personnel to inspect equipment to manufacturer's standards.
• Inspection documentation from an independent third party.
• Frees your personnel from the responsibility of equipment inspections.

A full report of findings will be provided to include accessibility of equipment to responders and any other recommendations to improve overall team performance. It will include other pertinent information such as the manufacturer, product number, and serial/lot number (where applicable), date of manufacture, and in-service date (when available). It will also include the results of pass/fail testing for both visual and functional inspection. All equipment deemed unsuitable for use will be tagged for removal from service.

Regardless of the stated service life, the condition of equipment – as determined through inspection by a qualified party – is a key factor in determining whether or not a piece of equipment is fit for service.

Although the definition of “equipment lifespan” is very broad depending on the manufacturer, each provides specific instructions on proper inspection of equipment and detailed explanations on when to retire the service item. Several general identifiers that pertain to all equipment are shown below.

Reasons for Equipment Retirement include:

• Item fails to pass any pre/post use or competent person inspection.
• Item has been subjected to a major fall or load.
• Item is constructed of plastic or textile material and is older than 10 years.
• You cannot determine the complete full-use history of item.
• You are not certain or have lost confidence in the equipment.

As a reminder, it is very important to keep the manufacturer’s instructions when purchasing new equipment. This is vital to identifying and keeping track of the manufacture date as well as other important information. For example, if the manufacture date of equipment, such as life safety rope and harnesses, cannot be identified; it can pose extreme liability for agencies or facilities whose teams may potentially be operating with equipment that has passed its service life. It could also create a compromise in the safe operation of the equipment.

A 10-year service life for nylon/polyester products is set according to ASTM F1740-96 (American Society for Testing and Materials).

Inspect Rescue Equipment Every Time It’s Used

All team members should be qualified and knowledgeable enough to perform pre- and post-use inspections of equipment. It is crucial that all members document each use of equipment, denote any deficiencies, and report to the proper person. One person should be designated to perform the competent person annual inspection. This person should have complete knowledge of the equipment and inspection procedures as well as the authority to keep or remove equipment from service as they see fit. If team members are unable to fill this role, a qualified third party with applicable manufacturer certifications in competent person inspection should be utilized to assist in determining the condition and estimated service life of rescue equipment.

Download Roco's Quick Checklist for your convenience. →

Rescue team members are encouraged to attend this inspection where they will receive information on proper pre- and post-use inspections for their equipment. Guidance can be also offered in areas of equipment care, inspection, record-keeping, and proper storage. Again, equipment recommendations will not be addressed unless specifically asked to do so – this is only an inspection of the equipment you currently have on site.

Remember, with rescue gear, lives are literally “on the line,” – if in doubt, throw it out!

To schedule your Roco Competent Person Inspection, or add it to your current training dates, call us at 800-647-7626 or email info@rocorescue.com. Roco offers this service at no charge for current customers or for a very nominal fee for non-customers.1


1 Current customers receive a one-day equipment inspection at no charge. Travel expenses apply for out-of-town customers.
2 References include: 1926.502 Appendix C; ANSI Z359.2 Section 5.5.2 Inspections; ASTM Rope Inspection Guide; NFPA 1983 Section 5.2; ANSI Z359.11 Annex A (harnesses); and ANSI Z359.4 Section 6.1.

NOTICE: The client remains responsible for ensuring that all guidelines and requirements for maintaining and, where indicated, removal of equipment from service, are followed. This includes removing equipment from service anytime there is a situation or incident that occurs during handling, training, or rescue, that might have caused damage or otherwise compromised the integrity of the equipment, particularly where internal damage that is not visible might be present (e.g. equipment dropped from height, exposure of nylon products to chemicals or other potentially degrading substances, etc.). Client will be required to complete a certification that between Roco inspections, the equipment was properly stored, was available only to personnel trained to use the equipment properly, and that any equipment that was exposed to any condition or occurrence that could have resulted in hidden damage has been removed from service. A company representative, preferably someone from the rescue team, must be present during the inspection process.

read more 

Roco Rescue Training in North Dakota

Monday, January 23, 2017

Roco is excited to be conducting several Rescue & Fall Protection Workshops at the 44th Annual Safety Conference next month in Bismarck, ND. This will kick off our working relationship with the ND Safety Council to provide safe, effective confined space rescue training for their membership. 

What's more, the North Dakota Safety Council (NDSC) is currently constructing a new safety campus in Bismarck that will house a 5,000 square foot hands-on training lab. Roco, as a training partner, will provide high-level technical rescue courses at this new facility on a year-round basis.

For the conference on February 20-23, we will be conducting a number of hands-on rescue workshops and presentations to be presented by Roco Lead Instructors Dennis O’Connell, Pat Furr, Brad Warr, Eddie Chapa and Josh Hill. Sessions include:

  • Intro to Competent Person Requirements for Fall Protection
    2/20 9am-6pm (classroom w/demo)
  • Confined Space Entrant, Attendant, and Supervisor Requirements
    2/20 9am-6pm (classroom w/demos) 
  • Tripod Operations
    2/21 11am-5pm (hands-on training) 
  • So You’ve Fallen, Now What?
    2/22 10am-11:30am (classroom)
  • Dial 911 for Confined Space Rescue
    2/22 1:30pm-2:30pm (classroom w/demos)
  • Confined Space and Rope Rescue...
    2/22 1:30pm-5pm (hands-on training) 
  • Trench Collapse Rescue Considerations
    2/22 2:45pm-3:45pm (classroom) 
  • Fallen/Suspended Worker Rescue
    2/23 8am-11:15am (classroom w/demos) 
  • We look forward to meeting you at Roco booths (#202 & #203) or in these training sessions. For more info, click to NDSC’s 44th Annual Safety & Health Conference. Don't forget to register online at www.ndsc.org for these training sessions.
read more 

Trench Collapse Fatalities Double in 2016

Tuesday, January 03, 2017

Twenty-three workers were killed and 12 others injured in trench collapses in 2016 – an alarming increase from the previous year. "There is no excuse,” said Dr. David Michaels, OSHA assistant secretary.

"These fatalities are completely preventable by complying with OSHA standards that every construction contractor should know."

Among the victims was a 33-year-old employee, crushed to death this summer as he dug a 12-foot trench for a plumbing company out of Ohio. An OSHA investigation found that they failed to protect its workers from the dangers of trench collapses. The company was issued two willful and two serious violations, with proposed penalties of $274,359.

OSHA's trenching standards require protective systems on trenches deeper than 5 feet, with soil and other materials kept at least two feet from the edge of trench.

OSHA has a national emphasis program on trenching and excavations with the goal of increasing hazard awareness and employer compliance with safety standards. For more information, read the news release.
Source: OSHA QuickTakes December 1, 2016, Volume 15, Issue 26

Comments from Dennis O'Connell, Roco Director of Training & Chief Instructor

In the above OSHA Newsletter, they highlight this growing problem. Besides the loss of human life, the “SERIOUS” and “WILLFUL” violations paragraph should get you asking, “Are we doing what we should be for trenching in our facility?” 

The new OSHA statistics show in 2016, we have two people a month dying in trenches, which is double the amounts for 2014 & 2015. Why, is the soil getting more dangerous? I can only speak to what I have seen in trends in industry that may be contributing to this rise. In previous articles, I have discussed the subject of trench and trench rescue and some of the following concerns:

• We are relying heavily on subcontractors to do trench work in our facilities.

• Entry Supervisors are not properly trained as Trench Competent Persons and are assuming the contractor is taking all necessary precautions.

• Our Confined Space Entry Supervisors are signing off on trenches as Confined Spaces and not as trenches.

• Rescue - most locations have not trained or equipped their rescue team to handle a possible trench rescue situation even though trench work is a common daily occurrence in most refineries and large municipalities.

• Trench rescue entities are far and few between. Most municipalities are ill equipped to handle trench collapse rescue.

 

Give us a call for a private Roco Trench Rescue training course at your facility or at the Roco Training Center. Or, register for Roco's open enrollment Trench Rescue course online.

 

 

read more 

Silent, Invisible, Insidious & Deadly...

Tuesday, October 18, 2016

By Pat Furr, Safety Officer & VPP Coordinator for Roco Rescue, Inc.

Oxygen-Depleted Atmospheric Hazards in Confined Spaces

It will take your breath away! This is a phrase often used to describe tremendous beauty, or exhilaration. However, in an oxygen-depleted environment, this phrase has a much more ominous meaning. The emotion it elicits is hardly pleasant and joyful. Confusion, panic, impending doom, and okay... maybe even euphoria, which has been reported in near drowning cases, but the euphoria is a late onset emotion once the brain is deprived of oxygen. Suffice to say, having your breath taken away in an oxygen-depleted environment is never a good thing!

In my prior career with USAF Pararescue, I underwent regularly scheduled physiological training in an altitude chamber; otherwise, known as a hypobaric chamber. This was used to train me to recognize the onset of hypoxia (low physiologic oxygen content) and the symptoms that are particular to me. The symptoms of hypoxia differ from person to person and mine were pretty subtle. A loss of peripheral vision and color acuity, a slight warming of the sides of my neck and face, but other than those symptoms, I didn’t have any dramatic, obvious clues that I was in trouble. On at least two occasions, I had to be told by the chamber operator to don my oxygen mask. Once I did, the return to normalcy was profound! I was then able to jot down my symptoms as I remembered them. As I was undergoing my slide into hypoxia, I was given basic written tests to perform such as simple addition problems, connecting the dots, finishing incomplete squares and circles. In every case, I thought that I was doing really well on my assignment; that is until my oxygen mask was returned and I reviewed my work. FAIL!!! This exercise was intended to demonstrate to me the insidious nature of hypoxia and the unrecognized affects it has on coordination and judgment.

My experiences in the altitude chamber were educational and potentially lifesaving if I were ever exposed to a low oxygen environment. By having experienced my subtle symptoms multiple times, perhaps I would recognize them in a lower than normal oxygen environment and be able to take action to rescue myself. However, the environment that I was exposed to was probably in the range of 12% oxygen by volume give or take. In lower concentrations, say below 10%, the onset of impaired judgment would be so rapid that I would have little chance to recognize and react on my own behalf. In extremely low concentrations of 0-8%, there is little chance for anyone to take self-rescue actions. More than likely, the individual will pass out after only one or two gasping breaths. And, most importantly, my experiences were in a controlled environment with highly trained observers and emergency personnel standing by. This is not always the case during confined space entry operations.

How do we end up with depleted oxygen concentrations in confined spaces? 

There are several ways, but I am going to address two broad categories of occurrence: (a) planned, and (b) unplanned. Planned low oxygen concentrations may be unavoidable when doing entries that require an inert gas environment, such as certain types of welding or when doing work in a flammable or explosive atmosphere. By removing the oxygen, one of the three elements of flame is eliminated. There will remain fuel and possibly a source of ignition, but by removing the oxygen, there is no potential for fire in nearly every instance. Even during planned oxygen depleted operations, things have a potential to go wrong. Equipment failure is one possible cause. Faulty supplied air breathing systems can be the culprit. It may be as simple as a failed “O” ring, a faulty diverter valve, a lost connection on an airline respirator system, and many other links of equipment. Or, it could be human error – such as not tending airlines and causing the mask to be dislodged or pulled completely off; failure to change out bottles on the SAR cart; exceeding the safe time and egress requirements if using backpack SCBA; or again, any number of human failures. So you can see that even during planned low O2 entries, the potential for an incident is quite high. That is why OSHA 1910.134 has such stringent requirements for entry into an atmospheric IDLH environment.

It is the unplanned depleted oxygen environments that seem to cause the most incidents, however. Within unplanned low O2 entries, I would like to further categorize them into two separate areas.

  1. Unplanned...in that the atmospheric hazard was thought to be controlled, but the potential for the hazard to appear was realized, and indeed created the low oxygen hazard. This could be due to improper isolation techniques or equipment failure.
  2. Unplanned and unanticipated...this is the one that really seems to be causing problems. It may happen in permit-required confined spaces and also in non-permit required confined spaces. Upon evaluation, the entry team may have identified the space as non-permit required and assumed there was no need to perform pre-entry atmospheric monitoring. In several incidents, unbeknownst to the entry team, a prior entry team introduced an inert gas into the space for their particular work activities and failed in two ways. The team did not ventilate the space to remove the inert gas and test it afterwards; and, more importantly, the prior entry team failed to communicate the presence of the inert gas to any potential follow-on entrants. Or it may be that the information regarding the inert gas was communicated, but that information was lost in the shuffle. It may have never made it to the follow-on entry team – or that team may have failed to properly process the information. As you can imagine, this type situation has not only led to the demise of the unaware follow-on entrant, but also to several would-be rescuers that attempted rescue without any clue that the oxygen concentration was at a lethal level.

So what is the solution? 

Although this simple step will not “guarantee” a safe entry operation, I know for a fact that by simply employing an atmospheric monitor to test for oxygen will save many lives. And, don’t limit the use of atmospheric monitors for entries into known or potentially low O2 atmospheres! That is an OSHA minimum, so why not exceed that minimum requirement and get into the habit of testing the oxygen concentration for ALL entries? And, not just for permit-required spaces, include non-permit spaces as well. You just never know. Also when monitoring, don’t forget to test the various levels of the space and all breathing zones. Various gases tend to stratify, some being heavier than air, and some lighter, while others are nearly equal and will diffuse universally. Maintain your monitors, calibrate them and bump test them as required by the manufacturer and use them regularly. They are easy to use and relatively inexpensive. They have saved many lives and will continue to do so, if used properly.

Be safe out there and monitor, monitor, monitor!

Although this article has focused on low oxygen atmospheres, we do not mean to minimize the potential for other hazardous atmospheres, such as toxic or flammable. It is just our experience that of all the hazardous atmospheres, it seems that low oxygen is the one that crops up more often and continues to claim a disproportionate number of entrants AND would-be rescuers.

read more 

Previous Next
1 2 3 4 5 .. 16

RescueTalk (RocoRescue.com) has been created as a free resource for sharing insightful information, news, views and commentary for our students and others who are interested in technical rope rescue. Therefore, we make no representations as to accuracy, completeness, or suitability of any information and are not liable for any errors, omissions, or delays in this information or any losses, injuries, or damages arising from its display or use. All information is provided on an as-is basis. Users and readers are 100% responsible for their own actions in every situation. Information presented on this website in no way replaces proper training!