Roco Rescue

RescueTalk

WE DO RESCUE

Q&A: Sked Stretcher - Is a Backboard Required?

Wednesday, April 02, 2014

READER QUESTION:
Can a patient be lowered in a vertical or horizontal Sked without being lashed to a backboard or without a backboard at all?

ROCO TECH PANEL RESPONSE:

The answer is YES! This is one of the advantages of choosing the Sked stretcher.


It can be used with most (if not all) backboards, with a short spine immobilizer, or with nothing at all.

There are two general considerations in deciding what device to use with the Sked or other flexible litters:

(1) Patient Condition - If spinal injuries or other injuries need the splinting effects or the protection of a backboard, then the victim should be lashed to a backboard. When a backboard is not in place, the Sked will help keep the body in line when tightened; however, the spine can continue to be manipulated up and down as patient is moved over objects or edges which can compromise the spine.

If you are just using the backboard to keep the Sked rigid or protect the patient while placing them over edges, then technically you would not need to lash them to the backboard.

When a confined space is too tight to use a backboard and possible spinal injuries are suspected, or additional protection for placing a patient over an edge is wanted, then a short spinal immobilizer such as the OSS can be used. If a spinal injury is not suspected, then no additional equipment needs to be used with the Sked. It is always good to keep in mind, however, that the thin plastic make-up of the Sked will allow the patient to feel every edge or bump you place or drag them over.


(2) Location
- What size portal do you need to get the patient and packaging through in order to perform the rescue? Many times in portals less than 18-inches, the individual pieces of equipment will fit into the space, but once put together they will not fit back out of the space. The Sked was designed for this specific circumstance. The thin plastic construction allows it to fit in places many other litters will not.

The Sked can also be used vertically with the bottom not curled and secured in cases where a hare-traction splint or other injury doesn’t allow securement at the bottom.

The Sked is a very user-friendly device that can be used in a multitude of configurations and for various applications. This is one of the reasons why it is such a popular rescue tool, especially for confined space rescue! Stay safe!


NOTICE: The information provided on our website and by our Tech Panel is a complimentary service for our readers. Responses are based on our understanding of the reader’s inquiry, the equipment and/or the technique in question. All rescue systems should be evaluated by a competent person before use in the support of any human loads. Proper training is required prior to use of rescue techniques or systems discussed. Because standards and regulations are typically performance based and often dependent on specific circumstances, it is important to review all regulations in their entirety and to follow the proper protocols for your company or organization.

read more 

Q&A: Tech Panel Answers

Tuesday, June 18, 2013

QUESTION FROM OUR READER:
In the new Stokes lashing video the instructor tied 2 butterfly knots into the webbing. Can this also be done with 2 figure eight knots in the webbing? Also I was looking for the information on Sked lashing, with by-passing the top 2 grommets and starting with the first 2 on the sides.

ANSWER:

The answer to your question about substituting figure-8 knots for butterfly knots in the webbing for the stokes lashing is Yes you can. You could also use two separate pieces of webbing to accomplish the same goal. Check out our Skedco Alternate Lashing Guide for details.

read more 

Lanyard Safety

Tuesday, December 04, 2012

Here's a question from one of our readers: How can you test a lanyard to determine if it is safe to use? Is there a standard checklist or procedure?

Answer from the Roco Tech Panel: As with all safety and rescue gear, we recommend that you inspect, use and care for it in strict accordance with the manufacturer’s instructions. Of course, all equipment should be carefully inspected before and after each use. And, as we always say, “If there’s any doubt, throw it out!” Sometimes it’s less expensive to simply replace the gear versus going through any elaborate testing process. We did find the following information regarding lanyard inspections in an “OSHA Quick Takes” document. Thank you for your question!

Lanyard Inspection

To maintain their service life and high performance, all belts and harnesses should be inspected frequently. Visual inspection before each use should become routine, and also a routine inspection by a competent person. If any of the conditions listed below are found, the equipment should be replaced before being used.

When inspecting lanyards, begin at one end and work to the opposite end. Slowly rotate the lanyard so that the entire circumference is checked. Spliced ends require particular attention. Hardware should be examined under procedures detailed below.

HARDWARE
Snaps: Inspect closely for hook and eye distortion, cracks, corrosion, or pitted surfaces. The keeper or latch should seat into the nose without binding and should not be distorted or obstructed. The keeper spring should exert sufficient force to firmly close the keeper. Keeper rocks must provide the keeper from opening when the keeper closes.

Thimbles: The thimble (protective plastic sleeve) must be firmly seated in the eye of the splice, and the splice should have no loose or cut strands. The edges of the thimble should be free of sharp edges, distortion, or cracks.

LANYARDS
Steel Lanyard:
While rotating a steel lanyard, watch for cuts, frayed areas, or unusual wear patterns on the wire. The use of steel lanyards for fall protection without a shock-absorbing device is not recommended.

Web Lanyard: While bending webbing over a piece of pipe, observe each side of the webbed lanyard. This will reveal any cuts or breaks. Due to the limited elasticity of the web lanyard, fall protection without the use of a shock absorber is not recommended.

Rope Lanyard: Rotation of the rope lanyard while inspecting from end to end will bring to light any fuzzy, worn, broken or cut fibers. Weakened areas from extreme loads will appear as a noticeable change in original diameter. The rope diameter should be uniform throughout, following a short break-in period. When a rope lanyard is used for fall protection, a shock-absorbing system should be included.

Shock-Absorbing Packs
The outer portion of the shock-absorbing pack should be examined for burn holes and tears. Stitching on areas where the pack is sewn to the D-ring, belt or lanyard should be examined for loose strands, rips and deterioration.

VISUAL INDICATIONS OF DAMAGE

Heat
In excessive heat, nylon becomes brittle and has a shriveled brownish appearance. Fibers will break when flexed and should not be used above 180 degrees Fahrenheit.

Chemical
Change in color usually appears as a brownish smear or smudge. Transverse cracks appear when belt is bent over tight. This causes a loss of elasticity in the belt.

Ultraviolet Rays
Do not store webbing and rope lanyards in direct sunlight, because ultraviolet rays can reduce the strength of some material.

Molten Metal or Flame
Webbing and rope strands may be fused together by molten metal or flame. Watch for hard, shiny spots or a hard and brittle feel. Webbing will not support combustion, nylon will.

Paint and Solvents
Paint will penetrate and dry, restricting movements of fibers. Drying agents and solvents in some paints will appear as chemical damage.

CLEANING FOR SAFETY AND FUNCTION

Basic care for fall protection safety equipment will prolong and endure the life of the equipment and contribute toward the performance of its vital safety function. Proper storage and maintenance after use is as important as cleaning the equipment of dirt, corrosives or contaminants. The storage area should be clean, dry and free of exposure to fumes or corrosive elements.

Nylon and Polyester
Wipe off all surface dirt with a sponge dampened in plain water. Squeeze the sponge dry. Dip the sponge in a mild solution of water and commercial soap or detergent. Work up a thick lather with a vigorous back and forth motion. Then wipe the belt dry with a clean cloth. Hang freely to dry but away from excessive heat.

Drying
Harness, belts and other equipment should be dried thoroughly without exposure to heat, steam or long periods of sunlight.

For the complete OSHA Quick Takes document, click here.

read more 

Question from a Petzl ID User

Tuesday, November 06, 2012

Here's a question for the Roco Tech Panel from one of our readers.
I recently became the ERT trainer. I have introduced the Petzl descender to the group and they love it. The question was brought up about the rating for lowering and raising of patients. What is it limits and can it be used in hauling up a two-person load? The max load the manufacturer says is around 600 pounds, and I am not sure if this is enough to meet what NFPA says. I really enjoyed the video Roco put out on this device, and would really enjoy seeing more on on other equipment.


Answer from the Tech Panel: Yes, you can use the Petzl ID-L (ID with red side plates that is NFPA G-rated) for raising and lowering two-person loads. For the ID-L, 600 lbf. is the “design load-rating requirement” for NFPA 1983 General Use. There are also two other ID versions – one with a yellow/gold side plate (ID-S) that is designed for smaller diameter ropes; and a blue side plate version, which will handle ½” rope like the red side plate but with a 550 lbf. design load.

So, what is the design load? Typically, it is the amount of weight/force a device or a system can handle; or the load that it is designed to handle. Once it has met the design load requirement for NFPA, it is placed in an equipment category and tested accordingly. In the case of the ID, it is tested as a descent control device. According to NFPA, General Use descent control devices shall withstand a minimum test load of at least 22 k/N (4946 lbf) without failure. I know what you’re thinking, “Hey, that’s not anywhere near the 9000 lbf we’re used to hearing for General Use?” NFPA requires that rope and carabiners be rated at 8992 lbf with pulleys and some other auxiliary items at 8093 lbf. Rope grab device shall withstand a minimum test load of at least 11 k/N (2473 lbf) without sustaining permanent damage to the device or rope to meet General Use. So, there is a wide range of strength requirements in NFPA 1983 depending on what category an item is tested in.

You must also consider that NFPA 1983 is a manufacturer’s standard and provides strength requirements for equipment to be classified as (T)-Technical Use (300lbf working load) – or (G)-General Use (600lbf working load). Rescuers must also refer to the manufacturer’s recommendations for use. However, an NFPA 1983 G-rating provides a quick field reference to the working load and confirms that a piece of equipment has been tested accordingly. This is important because OSHA will most likely look at this if there is an incident.

To answer your question, the manufacturer (Petzl) allows the ID to be used for the lowering and raising of two-person loads. If you have any other questions or need more information, please let us know – we’ll be glad to help. We also hope to have other videos available soon!
read more 

Update: Question to OSHA on Individual Retrieval Lines

Tuesday, September 18, 2012

Report submitted by John Voinche', Sr. Vice President/COO, Roco Rescue

In July, a group of Roco instructors conducted a Confined Space Rope Rescue demonstration for OSHA representatives from Washington, DC. These agency officials represented both General Industry and Construction. This demo was used to clarify our concerns about a pending Letter of Interpretation (LOI) concerning Individual Retrieval Lines in confined spaces that was brought to our attention last year. Here is a little background…

Last July (2011), we brought you a story entitled, “What’s the talk about individual retrieval lines?”  At the heart of the issue was a pending LOI from OSHA regarding how retrieval lines are used inside confined spaces. [Note: This LOI is pending and has not been published in the Federal Register.]

Here’s the question to OSHA from a gentleman in Maryland which initiated the LOI…

“Does OSHA 1910-146 (k)(3) require that each individual entrant, including workers and/or rescuers, entering into a confined space be provided with an independent retrieval line or can more than one entrant be connected to a single retrieval line?”

The proposed answer from OSHA stated that each entrant should have an “individual” retrieval line, despite the fact that the word “individual” is not included in this section of the standard [1910.146 (k)(3)(i)].
 
Roco then wrote a letter to OSHA requesting clarification about the forthcoming LOI. A portion of our letter stated that, “This pending interpretation is different from our understanding of what’s required by the regulation. While this particular technique is one option of providing external retrieval, there are other alternatives currently being used by rescuers.”

One of the techniques being used is a “single retrieval line” for multiple entrant rescuers. The first rescuer to enter the space is attached to the retrieval line via an end-of-line Figure 8 on a Bight. Any subsequent rescuers enter the space attached to the same retrieval line using mid-line Butterfly knots. In our opinion, this satisfies the intent of the regulation in that each entrant is attached to a retrieval line.

However, in the case of multiple entrants, requiring “individual” lines as mentioned in the proposed LOI may represent an entanglement hazard. This, in effect, may cause entrants to opt out of using retrieval lines due to potential entanglement hazards (which is allowed by the standard if entanglement hazards are a concern). So, in our opinion, this effort to bring more clarity to the issue may further complicate the matter.
 
Again, we believe the single retrieval line method described above is one way to rescue entrants while satisfying the intent of the standard at the same time. More background is available by reading our original story.

Fast-forward back to July 2012… the demonstration lasted about four hours. During this time, Roco demonstrated numerous retrieval line techniques as well as the “pros and cons” for each system. There was a great deal of discussion back and forth on how this pending letter of interpretation could affect rescuers and entrants – and their ability to perform their jobs safely and efficiently.
 
We would like to thank OSHA for allowing us to offer our feedback concerning this topic. We also want to say a special thanks to the Baltimore Fire Department for allowing us to use their training facilities. We don’t know when a final LOI will be issued, but we will keep you posted!
read more 

Previous Next
1 2 3 4 5 .. 9

RescueTalk (RocoRescue.com) has been created as a free resource for sharing insightful information, news, views and commentary for our students and others who are interested in technical rope rescue. Therefore, we make no representations as to accuracy, completeness, or suitability of any information and are not liable for any errors, omissions, or delays in this information or any losses, injuries, or damages arising from its display or use. All information is provided on an as-is basis. Users and readers are 100% responsible for their own actions in every situation. Information presented on this website in no way replaces proper training!