Roco Rescue

RescueTalk

WE DO RESCUE

How to Haul a Victim in Half the Time: Part 2

Tuesday, June 28, 2011

Well, maybe not half the time, but certainly some fraction of the time.

In How to Haul a Victim in Half the Time: Part 1, we covered ways to reduce the time needed to haul a rescue package by taking advantage of changes of direction.

Here, we want to address OSHA and ANSI guidance regarding retrieval systems – specifically mechanical devices used for rescue.

OSHA 1910.146(k)(3) states “To facilitate non-entry rescue, retrieval systems or methods shall be used whenever an authorized entrant enters a permit space, unless the retrieval equipment would increase the overall risk of entry or would not contribute to the rescue of the entrant.

Additionally, OSHA follows the ANSI Z117-1-1989 approach that was in effect at the time of OSHA 1910.146 promulgation, which states, “A mechanical device shall be available to retrieve personnel from vertical type PRCS’s greater than 5 feet in depth.” It also adds, “In general, mechanical lifting devices should have a mechanical advantage adequate to safely rescue personnel.”

Subsequent revisions to ANSI Z117 included the recommendation that “The mechanical device used should be appropriate for rescue service.” The revised standard adds,“Mechanical lifting devices should have a mechanical advantage of at least four to one and the capacity to lift entrants including any attached tools and equipment.”

Two key points that must be considered: (1) OSHA follows the ANSI approach that was in effect at the time 1910.146 was promulgated which did not recommend a minimum mechanical advantage ratio; and, (2) The rule makers intended to leave a degree of latitude for the rescue service to select a lifting device that is most appropriate for the particular situation encountered.

Roco’s rule of thumb is… the mechanical device used should be appropriate for rescue service – and the employer should not use any mechanical device that could injure the entrant during rescue, which would include a mechanical device with too great a mechanical advantage (MA) for the number of people operating the system. Here’s a guideline we use for determining the proper number of rescuers for a particular system – it should take some effort to haul the victim, but not so much effort that it wears the rescuers completely out. And, it should not be too easy, or you won’t as readily feel if the victim gets hung-up.

Because 1910.146 is a performance-based regulation, it does not specify the rescue procedures that are most appropriate for any given PRCS. It leaves this to the responding rescue service based on their assessment of the PRCS in terms of configuration, depth, and anticipated rescue load. Current ANSI Z117 recommends that the MA “should” be at least four to one. Notice that it does not state “shall” and thus the discretion of the rescue service is taken into account. A generic recommendation of a 4:1 is a good start but should not be considered as a catch-all answer to the problem of lifting the load. Even a 4:1 may not be enough if the person doing the hauling is not strong enough and may require a greater M/A in order to remove the load from the space.

Must we always use a minimum MA of 4:1, or could there be justification in using an MA below the 4:1 ratio when there is a need to provide a faster means of hauling the rescue package? Consider the possibility of reducing the mechanical advantage ratio when there is plenty of haul team members. If you have 4 haul team members for a 250 pound rescue package, do you really need that 4:1 MA? Consider going with a 3:1 or even a 2:1, especially if the throw is short and the haul is long. However, keep in mind that the package will be traveling much faster by reducing the MA – so it is imperative that a “hole
watch” be assigned to monitor the rescue package and be ready to call an immediate “STOP” should the package become hung up.

Caution: If you’re using a piggyback system, make sure the haul team does not outpace the individual taking in the mainline slack through a ratchet device. Should a lot of slack build up in the mainline and the haul team lose control of the haul line, the resulting free-fall of the load could spell disaster. Of course we always encourage the use of a safety (belay) line, but on rare occasions the urgency of the rescue may warrant not using a safety line on the victim.

Ultimately it is the employer’s responsibility to evaluate the selected rescue service’s ability to provide prompt and effective rescue. If the rescue service is able to demonstrate their capability using an MA that is less than the current ANSI recommendation, then that would meet the performance-based nature of the standard. In reality, by using a reduced MA, the time required to extricate the rescue package can be cut by 1/3 to 1/2 depending on the situation. In certain emergencies, that saved time could very easily mean the difference between a successful rescue and a body recovery.
read more 

How to Haul a Victim in Half the Time: Part 1

Thursday, May 12, 2011

As anyone who has ever been summoned to an industrial site for a confined space rescue, or has taken the opportunity to practice rescue drills in these facilities knows, sometimes the working area for the rescue team can be a tad cozy.  By “cozy” we mean cramped.  If there is the need for a haul of the rescuers or victim after a lower, these cramped conditions can cause multiple problems.  Consider it a challenge to overcome, and use your rope rescue know-how to come up with an efficient solution that will not only reduce congestion at the working area, but will most likely provide for a much faster haul of the rescue package.

First of all, if the space lends itself to a vertically mounted block and tackle, the problem is greatly reduced.  However, if there is no overhead anchor available and the use of a portable overhead anchor such as a tripod is not feasible then a “lane” for the haul team may be necessary.  At times, even the use of a vertically mounted block and tackle may require a solution to a congested working area.

Sometimes we are confronted with a very short throw between the mechanical advantage anchor point and the edge of the portal.  This may cause multiple resets of the haul system, be it a piggyback system or a Z-Rig.  These short throws with multiple resets will really slow down the progress of hauling the rescue package and can become a significant hazard when the need for rapid retrieval is needed.

If the opportunity presents itself, take advantage of a simple change of direction on the haul system.  At times, a single 90-degree change of direction can convert a short 3-4 foot throw into a throw many times longer.  We see this all the time on catwalks, yet it is often overlooked by our rescue teams when we throw scenario-based training evolutions at them.  Yes, it does require some extra equipment which typically amounts to a single sheave pulley, a carabiner, and a utility strap.  It also adds some frictional losses at that directional pulley, but the advantage gained by extending the throw from 3-4 feet to 20 or more feet, far outweighs the disadvantages of extra equipment, added friction, and time needed to make the change.

If a single change of direction doesn’t quite solve the short throw problem, consider two, or even more changes of direction in order to position the haul team in an area thatthey can “walk the haul” using their leg strength instead of being bunched up and using their arm strength only.  Of course, it gets to a point where too many changes of direction exhausts the equipment cache or creates so much friction that any advantage is lost.

As in any rescue situation, a good cohesive team is a great benefit.  If the situation causes the team to be bunched up on top of each other, remember to scan the area for an opportunity to open things up a bit.  Sometimes that change of direction does wonders for the ability of the team to take full advantage of their strength in numbers, and creates a situation where if needed, speed can be a lifesaver.

About the Author:
Patrick Furr, employed with Roco since 2000, has been actively involved with technical rescue since 1981. Pat is a Chief Instructor/Technical Consultant for Roco and currently resides in Albuquerque, New Mexico. He has also been an On-Site Safety Services Team Leader for Roco at a major semiconductor company in New Mexico for the past ten years. As a Chief Instructor, Pat teaches Confined Space Rescue, Rope Access, Tower Work/ Rescue and Fall Protection programs across North America. Prior to Roco, he served 20 years in the U.S. Air Force as a Pararescueman (PJ). His background includes eight years as a member of the 71st Pararescue team in Anchorage, Alaska, where he specialized in mountain and glacier rescue. Pat was a team leader of the 1986 and 1988 PJ teams that summited Mt. McKinley and augmented the National Park Service mountain rescue team. He also spent two tours of duty in Iceland where he put in multiple “first ascent” ice routes.
read more 

Rescue Plans…What is required?

Tuesday, April 12, 2011

We had a very interesting inquiry regarding OSHA’s requirements for rescue plans and wanted to share it with you.

Reader’s Question: Does OSHA 1910.146 (k)(1)(v) state that a plan must be developed by a rescue service before an entry can be made? Can entries be conducted with the understanding that a rescue service has the competence to rescue someone without seeing the space prior?


Section (k)(1)(v) of the regulation states that the employer shall…“Provide the rescue team or service selected with access to all permit spaces from which rescue may be necessary so that the rescue service can develop appropriate rescue plans and practice rescue operations.” [Emphasis added]

First of all, it’s important to note that the term “plan” as used in safety-related regulations and standards such as the Permit-Required Confined Space (PRCS) standard, can have a more general meaning than what rescuers typically think of when they refer to “rescue preplans.” When rescuers refer to “rescue preplans,” what usually comes to mind is a very specific, detailed plan for rescue from a particular space.

Although the regulations do not specifically state that a “plan must be developed by a rescue service before an entry can be made,” the regulation assumes that a properly selected (and evaluated) rescue team or service will develop appropriate rescue plans, and requires that rescuers be given access as necessary to develop those plans. OSHA makes it very clear, however, in Non-Mandatory Appendix F, the Preamble to the Final Rule, Summary and Explanation of the Final Rule, and its Compliance Directive on Permit-Required Confined Space, that it interprets the regulation to require rescue plans. [See links below.]

How specific a “rescue plan” must be in order to meet OSHA requirements can be determined by answering this question…“How detailed must the rescue plan be to enable me to safely perform a timely rescue from the permit-required confined space being entered?” Generally speaking, the simpler and more generic the space and the entry, the simpler and less detailed the plan must be. The more complex the space and the hazards, the more specific and detailed the plan must be. And, the more likely the rescue service should see the space and/or a representative space in advance.

As such, the degree and content of the rescue plan should be determined by the rescue service – and it must be provided access to do so. Ultimately, however, it is the employer’s responsibility to perform an adequate evaluation of the prospective rescue service. The viability of the rescue plan should be demonstrated; therefore, proving that the rescue service is staffed, equipped, available, and proficient in performing timely rescue from that particular space (or representative space). The employer must be confident that the rescue service can “Talk the talk, and walk the walk.”

When evaluating the capabilities of a rescue service, Non-Mandatory Appendix F provides guidelines for doing so and specifically references “rescue plans” for the types of spaces involved. It is also important for employers to note that while it is “not mandatory” that the evaluation is performed in exactly the same way; you still have to reach the same result. In other words, it is a non-mandatory means of meeting the mandatory requirements.

Section B (1) of Appendix F asks…
Does the rescue service have a plan for each of the kinds of permit space rescue operations at the facility?

Is the plan adequate for all types of rescue operations that may be needed at the facility?

Note: Teams may practice in representative spaces, or in spaces that are ‘worst-case’ or most restrictive with respect to internal configuration, elevation, and portal size.

Appendix F also offers recommendations for determining whether a space is “truly” representative of an actual space. [See link below.]

You can also refer to Roco’s Confined Space Types Chart (click here to download) which illustrates various confined space types for rescue practice and planning purposes.

In summary, prior to permit required entry operations, the employer must afford the selected rescue service access to the permit spaces they may respond to for the purposes of rescue planning.  The degree and content of the rescue plan should be determined by the rescue service. The rescue service must be prepared and proficient in rescue from the “same type(s) of confined spaces” in terms of configuration, access, and hazards.

IMPORTANT: The information in Roco Rescue Online is provided as a complimentary service for emergency response personnel. It is a general information resource and is not intended as legal advice. Because standards and regulations relating to this topic are typically performance based, and compliance with those standards and regulation is often dependent on the specific circumstances and conditions at hand, it is always important to carefully review all relevant standards and regulations, and to follow the proper protocols specific to your company or agency.

ONLINE REFERENCES:


OSHA 1910.146 Appendix F.

OSHA CPL 02-00-100, 5/5/1995, Application of the Permit-Required Confined Spaces (PRCS) Standards, 29 CFR 1910.146  Appendix D, V. Rescue, D. Combinations: 1. a.

OSHA 1910.146 Permit-Required Confined Spaces, Section: 2, II. Summary and Explanation of the Final Rule
read more 

Confined Space Stand-by Teams: How many members?

Monday, March 28, 2011

This topic was brought to light by one of our blog participants. Since it may affect many industrial rescue teams in our readership, we are posting the information here to share with the entire community.

In response to a question about manpower requirements for stand-by rescue teams (How many members should be on a standby team?), the Roco Tech Panel has gathered some information which we hope will be helpful. First of all, we will address it from a regulations and standards prospective, and then offer some considerations and practical guidelines that we use here at Roco. 

Of course, your company’s internal policy and safety procedures must always be considered first.

OSHA’s Permit Required Confined Space Regulation (1910.146) is our primary reference for this topic; and, as mentioned, it does not state the specific number of personnel required for stand-by operations. This standard is intended to be “performance based” and a determination of the prospective rescue service’s ability to perform rescue from the types of spaces which they may respond is to be evaluated by the employer. If the evaluated team, regardless of number, can safely and effectively perform rescue from the applicable spaces in a timely manner, then the team would be deemed capable.

However, we must also use a degree of judgment and take into consideration all the particulars of the types of spaces that may be encountered and the types of injuries that the entrants may incur – which will dictate the type of patient packaging that may or may not be required inside the space.  All the factors, such as twists and turns into and out of the space, communications, placement of directionals, and intermediate anchors and haul/lowering systems should all be considered factors in determining the size of the rescue team. As an example, rescuing an entrant from a 24-inch round horizontal portal that is 3-feet off the ground would require a minimum of personnel. But, take this same scenario to 80-feet off the ground, or an on-air IDLH event, and it’s a much different story!

Next, the Respiratory Standard (1910.134), section (g)(3)(i) states that “One employee or, when needed, more than one employee is located outside the IDLH atmosphere;” and Section (g)(3)(iii) adds that…“The employee(s) located outside the IDLH atmosphere are trained and equipped to provide effective emergency rescue” – however, we are given no set number of personnel.

Sometimes we hear the HAZWOPER standard (1910.120) cited regarding IDLH response requirements. This standard requires the use of the “buddy system with stand-by personnel” for emergency response operations involving the release of hazardous substances producing IDLH conditions for employees responding. This regulation specifies a minimum of four personnel, two as a team in the buddy system and two stand-by personnel, to conduct operations in hazardous areas safely. Again, however, this is from the HAZWOPER regulation.

From the National Fire Protection Association, NFPA 1670 (Standard on Operations and Training for Technical Search and Rescue Incidents) states that six (6) rescue technicians shall be the minimum staffing for a “Technician Level” confined space response. This typically means any IDLH condition (breathing air; complexity; elevated or entanglement concerns) that exists in a permit required confined space rescue operation.

Now, we’ll give you an idea of how we address this at Roco with our stand-by rescue services. First of all, our typical (standard) Confined Space Rescue Team is made up of three persons including a Crew Chief and two Rescue Technicians. Keep in mind, that these are experienced, professional emergency responders, who perform stand-by rescue operations and/or train on a regular, if not daily, basis. In addition, the job circumstances and scope of work are carefully evaluated prior to committing a specific number of personnel. As a example, here are some basic guidelines:

Four-person team (minimum) for jobs involving inert entries, other types of IDLH entries, unusual space configurations (i.e., long distances, underground piping or complex obstructions.) As mentioned above, a three-person team made up of experienced rescuers is our standard operational manning requirement. This applies to the majority of our stand-by rescue work. In certain instances, a two-person team may be appropriate. For example, when there is very low potential for atmospheric hazards; large and easily assessable manways; no secondary lowering operations required; strictly horizontal movement, etc.

In closing, we must re-emphasize that OSHA 1910.146 is a performance-based standard that requires safe, timely and capable rescue response for confined space incidents. A realistic, hands-on rescue performance evaluation as referenced in Appendix F of this regulation can be a valuable tool in determining training, equipment and personnel needs based on the circumstances in your response area.

We hope this information has been helpful. Roco Rescue Online and the information herein is provided as a complimentary service for rescuers and emergency response personnel. As always, proper training is required prior to use of any technique described. If we may be of further assistance, please don’t hesitate to contact us at Roco headquarters by calling, 1-800-647-7626.
read more 

Atmospheric Monitors: “Calibration vs. Bump Testing”

Friday, January 21, 2011

“The fact that we rely on these instruments to detect hazards that may be colorless, odorless, and very often fatal, should be reason enough to motivate us to complete a very strict schedule of instrument calibration/maintenance and pre-use bump testing.”

Here at Roco, we’re often asked for an explanation of the difference between “calibration” and “bump testing” of portable atmospheric monitors. There seems to be some confusion, specifically regarding bump testing. Some folks believe that bump testing and calibration are the same thing. Others think that bump testing is no more than allowing the monitor to run its “auto span function” during the initial startup sequence – or by running a “manual auto span” in order to zero out the display if there is any deviation from the expected values.

To preface this explanation, it is important that the user maintain and operate the monitor in accordance with the manufacturer’s instructions for use. There are some general guidelines that apply to all portable atmospheric monitors and some of the information in this article is drawn from an OSHA Safety and Health Information Bulletin (SHIB) dated 5/4/2004 titled “Verification of Calibration for Direct Reading Portable Gas Monitors.”

Considering that atmospheric hazards account for the majority of confined space fatalities, it is absolutely imperative that the instruments used to detect and quantify the presence of atmospheric hazards be maintained in a reliable and ready state. Environmental factors such as shifts in temperature, humidity, vibration, and rough handling all contribute to inaccurate readings or outright failure of these instruments. Therefore it is critical to perform periodic calibration and pre-use bump testing to ensure the instruments are capable of providing accurate/reliable information to the operator.

Calibration of the monitor involves using a certified calibration gas in accordance with the manufacturer’s instructions. This includes exposing the instrument sensors and allowing the instrument to automatically adjust the readings to coincide with the known concentration of the calibration gas. Or, if necessary, the operator will manually adjust the readings to match the known concentration of the calibration gas.

In addition to using a certified calibration gas appropriate to the sensors being targeted, do not ever use calibration gas that has passed its expiration date. The best practice is to use calibration gas, tubing, flow rate regulators, and adapter hoods provided by the manufacturer of the instrument.

The frequency of calibration should also adhere to the manufacturer’s instructions for use; or, if more frequent, the set protocol of the user’s company or facility. Once the monitor has been calibrated, it is important to maintain a written record of the results including adjustments for calibration drift, excessive maintenance/repairs, or if an instrument is prone to inaccurate readings.

Each day prior to use, the operator should verify the instrument’s accuracy. This can be done by completing a full calibration or running a bump test, also known as a functional test. To perform a bump test, use the same calibration gas and equipment used during the full calibration and expose the instrument to the calibration gas. If the readings displayed are in an acceptable range compared to the concentrations of the calibration gas, then that is verification of instrument accuracy. If the values are not within an acceptable range, then a full calibration must be performed and repairs/replacement completed as necessary.

Modern electro-mechanical direct reading atmospheric monitors have come a long way in recent years in terms of reliability, accuracy, and ease of use. But they are still relatively fragile instruments that need to be handled and maintained with a high degree of care. The fact that we rely on these instruments to detect hazards that may be colorless, odorless, and very often fatal should be reason enough to motivate us to complete a very strict schedule of instrument calibration/maintenance and pre-use bump testing.

For more information on this subject, please refer to the November 20, 2002 ISEA position Statement “Verification of Calibration for Direct Reading Portable Gas Monitors Used In Confined Spaces”; “Are Your Gas Monitors Just expensive Paperweights?” by Joe Sprately, and James MacNeal’s article as it appears in the October 2006 issue of Occupational Safety and Health magazine.
read more 

Previous Next
.. 12 13 14 15 16 .. 18

RescueTalk (RocoRescue.com) has been created as a free resource for sharing insightful information, news, views and commentary for our students and others who are interested in technical rope rescue. Therefore, we make no representations as to accuracy, completeness, or suitability of any information and are not liable for any errors, omissions, or delays in this information or any losses, injuries, or damages arising from its display or use. All information is provided on an as-is basis. Users and readers are 100% responsible for their own actions in every situation. Information presented on this website in no way replaces proper training!