Roco Rescue

RescueTalk

WE DO RESCUE

Using a Crane in Rescue Operations

Sunday, September 30, 2018

We’re often asked, “Can I use a crane as part of my rescue plan?”

If you’re referring to using a crane as part of moving personnel or victims, the answer is “No, except in very rare and unique circumstances.” The justification for using a crane to move personnel, even for the purposes of rescue, is extremely limited. Therefore, it is very important to understand the do’s and don’ts for using a heavy piece of equipment in a rescue operation.

On the practical side, the use of a crane as a “stationary, temporary high-point anchor” can be a tremendous asset to rescuers. It may also be part of a rescue plan for a confined space; for example, a top entry fan plenum. The use of a stationary high-point pulley can allow rescue systems to be operated from the ground. It can also provide the headroom to clear rescuers and packaged patients from the space or an elevated edge.

Of course, the security of the system's attachment to the crane and the ability to “lock-out” any potential movement are a critical part of the planning process. If powered industrial equipment is to be used as a high-point, it must be treated like any other energized equipment with regard to safety. Personnel would need to follow the Control of Hazardous Energy [Lockout/Tagout 1910.147]. The equipment would need to be properly locked out – (i.e., keys removed, power switch disabled, etc.). You would also need to check the manufacturer’s limitations for use to ensure you are not going outside the approved use of the equipment.

Back to using a crane for moving personnel – because of the dangers involved, OSHA severely limits its use. In order to utilize a crane, properly rated “personnel platforms or baskets” must be used. Personnel platforms that are suspended from the load line and used in construction are covered by 29 CFR 1926.1501(g). There is no specific provision in the General Industry standards, so the applicable standard is 1910.180(h)(3)(v).

This provision specifically prohibits hoisting, lowering, swinging, or traveling while anyone is on the load or hook.
OSHA prohibits hoisting personnel by crane or derrick except when no safe alternative is possible. The use of a crane for rescue does not provide an exception to these requirements unless very specific criteria are met. OSHA has determined, however, that when the use of a conventional means of access to any elevated worksite would be impossible or more hazardous, a violation of 1910.180(h)(3)(v) will be treated as “de minimis” if the employer complies with the personnel platform provisions set forth in 1926.1501(g)(3), (4), (5), (6), (7), and (8).

Note: De minimis violations are violations of standards which have no direct or immediate relationship to safety or health. Whenever de minimis conditions are found during an inspection, they are documented in the same way as any other violation, but are not included on the citation.

Therefore, the hoisting of personnel is not permitted unless conventional means of transporting employees is not feasible. Or, unless conventional means present even greater hazards (regardless if the operation is for planned work activities or for rescue). Where conventional means would not be considered safe, personnel hoisting operations meeting the terms of this standard would be authorized.

OSHA stresses that employee safety, not practicality or convenience, must be the basis for the employer's choice of this method.
However, it’s also important to consider that OSHA specifically requires rescue capabilities in certain instances, such as when entering permit-required confined spaces [1910.146]; or when an employer authorizes personnel to use personal fall arrest systems [1910.140(c)(21) and 1926.502(d)(20)]. In other cases, the general duty to protect an employee from workplace hazards would require rescue capabilities.

Consequently, being “unprepared for rescue” would not be considered a legitimate basis to claim that moving a victim by crane was the only feasible or safe means of rescue.

This is where the employer must complete written rescue plans for permit-required confined spaces and for workers-at-height using personal fall arrest systems – or they must ensure that the designated rescue service has done so. When developing rescue plans, it may be determined that there is no other feasible means to provide rescue without increasing the risk to the rescuer(s) and victim(s) other than using a crane to move the human load. These situations would be very rare and would require very thorough documentation. Such documentation may include written descriptions and photos of the area as part of the justification for using a crane in rescue operations.

Here’s the key… simply relying on using a crane to move rescuers and victims without completing a rescue plan and very clear justification would not be in compliance with OSHA regulations.
It must be demonstrated that the use of a crane was the only feasible means to complete the rescue while not increasing the risk as compared to other means. Even then, there is the potential for an OSHA Compliance Officer to determine that there were indeed other feasible and safer means.

WARNING: Taking it a step further, if some movement of the crane (or fire department aerial ladder, for example) is required, extreme caution must be taken! Advanced rigging techniques may be required to prevent movement of the crane from putting undo stress on the rescue system and its components. Rescuers must also evaluate if the movement would unintentionally “take-in” or “add” slack to the rescue system, which could place the patient in harm’s way. Movement of a crane can take place on multiple planes – left-right, boom up-down, boom in-out and cable up-down. If movement must take place, rescuers must evaluate how it might affect the operation of the rescue system.

Of course, one of the most important considerations in using any type of mechanical device is its strength and ability (or inability) to “feel the load.” If the load becomes hung up on an obstacle while movement is underway, serious injury to the victim or an overpowering of system components can happen almost instantly. No matter how much experience a crane operator has, when dealing with human loads, there is no way he can feel if the load becomes entangled. And, most likely, he will not be able to stop before injury or damage occurs.

Think of it this way, just as rescuers limit the number of haul team members so they can feel the load, that ability is completely lost when energized devices are used to do the work.
For rescuers, a crane is just another tool in the toolbox – one that can serve as temporary, stationary high-point making the rescue operation an easier task. However, using a crane that will require some movement while the rescue load is suspended should be a last resort! There are simply too many potential downfalls in using cranes. This also applies to fire department aerial ladders. Rescuers must consider the manufacturer’s recommendations for use. What does the manufacturer say about hoisting human loads? And, what about the attachment of human loads to different parts of the crane or aerial?

There may be cases in which a crane is the only option. For example, if outside municipal responders have not had the opportunity to complete a rescue plan ahead of time, they will have to do a “real time” size-up once on scene. Due to difficult access, victim condition, and/or available equipment and personnel resources, it may be determined that using a crane to move rescuers and victims is the best course of action.

Using a crane as part of a rescue plan must have rock-solid, written justification as demonstration that it is the safest and most feasible means to provide rescue capability. Planning before the emergency will go a long way in providing options that may provide fewer risks to all involved.

So, to answer the question, “Can I include the use of a crane as part of my written rescue plan?” Well, yes and no. Yes, as a high-point anchor. And, no, the use of any powered load movement will most likely be an OSHA violation without rock-solid justification. The question is, will it be considered a “de minimis" violation if used during a rescue? Most likely it will depend on the specifics of the incident. However, you can be sure that OSHA will be looking for justification as to why using a crane in motion was considered to be the least hazardous choice.

NOTE: Revised 9/2018. Originally published 10/2014.


read more 

PFAS Worked... Now It's Time for Rescue

Monday, June 04, 2018

Does your company authorize employees to work at height using personal fall arrest systems (PFAS)? 

If so, you need to keep reading. Even if your employees don't use personal fall arrest systems, but they work at height using passive restraint, active restraint, or work-positioning systems, you need to keep on reading.

If you have demonstrated that there is no feasible means to utilize employee protection on the "Hierarchy of Fall Protection" other than fall arrest, meaning there is no way to bring the work to the ground or to use a fall restraint, then you have accepted that at some point, your employee will fall.

The personal fall arrest system (PFAS) is there to arrest their fall before they hit the ground or other hard parts, and to minimize injury during that fall and arrest event. OSHA requires employers who authorize personal fall protection systems to provide "prompt rescue," and a big reason for this is OSHA now recognizes suspension trauma as a hazard. Reference: 1910.140(c)(21) "The employer must provide for prompt rescue of each employee in the event of a fall," OSHA Safety and Health Information Bulletin (SHIB 03-24-2004, updated 2011) regarding Suspension Trauma.

Even though this is not specifically required by OSHA, wouldn't it make sense to have a prompt rescue capability for times when an employee is injured or becomes suddenly ill while working at height?
This could be an employee who is protected by passive restraint but not PFAS. For instance, if an employee needs to climb a vertical fixed ladder to access a platform with perimeter guardrails 20 feet above the next lower level and is incapacitated due to injury or illness, how will you get that employee to the ground for treatment and transport? Most likely it will require a technical rope rescue effort or some other means of getting them from height and safely to the ground.

Having Suspended Worker Rescue Preplans already in place goes a long way in preparing for the emergency of a fallen suspended worker or a worker that is injured or becomes ill but is isolated by height. By completing these preplans, it should become apparent when the requirements for viable rescue go beyond what I call the "Fred Flintstone" rescue (i.e., "so easy a caveman can do it!").

Additionally, there are products that will delay the onset of suspension trauma should a worker fall and remain suspended in their PFAS. An example is the FreeTech™ Harness available from Roco which significantly improves survivability post fall arrest. This unique harness buys time for the suspended worker while awaiting rescue. 

Assisted, non-technical rescue can be accomplished using ladders, man lifts, or many other primitive but effective means. However, there comes a point where the situation will require some degree of technical rescue capability. If you have done an honest and knowledgeable assessment of the rescue needs for your facility for all the known or potential areas where you may have employees working at height, you very likely will have found the need for a technical rescue requirement. 

If you are lucky, and your facility is located in a municipality that has emergency responders with a rope rescue capability that is willing and able to respond to your location, then you still must ensure that they can perform what needs to be done.

A really good way to do this is to have them come to your facility for the purposes of preplanning and hopefully demonstrating their abilities. Simply posting "911" as the plan, and calling it good, is not even close.

Some facilities have in-house teams that are equipped and trained to perform technical rescue. These in-house teams are generally the fastest to respond and it usually eliminates the problem of relying on a municipal rescue team that may be called out on a separate emergency. 

For companies that do not have a municipal agency that can and will respond or does not have the technical ability to perform the types of rescues that may be required, there is always the option of training host employees to perform these types of rescue.
The first option is a single day of training using pre-engineered rescue systems or what we like to call "plug and play" systems. The second option is a two-day "build as you go" class that provides solutions in rescue environments that the pre-engineered systems are unable to cover. 

Roco's one-day Pre-Engineered Rescue Systems training relies on manufactured rescue systems that require no knot tying, or the need to create mechanical advantages, or to load friction control devices. These systems are so straight forward that most students will be able to operate them safely and proficiently even if they haven't performed refresher training for several months. With these systems, you literally take the system out of a bag, hang it up to a suitable anchor, and you are ready to rescue.

Roco teaches a variety of techniques that are suitable for a conscious, uninjured suspended victim and also for an unconscious or injured victim who would need to be connected to the rescue system remotely by the use of a telescopic "gotcha pole." As straightforward and easy as this system is to become proficient with, it does have its limitations. For example, in order for this type of system to be employed, the rescuer(s) must be able to safely get into a position above or slightly offset, and within about 10 feet from the victim. If that is not possible, then it is time to prepare for a technical suspended worker rescue.

Roco's two-day Suspended Worker Rescue class teaches a limited variety of knots, including tied full-body harnesses, mechanical advantage systems, anchoring, friction control, lowering, rappelling, hauling, and line transfer systems. These skills are not that hard to master, but they are perishable and require sufficient practice at regular intervals in order to maintain proficiency. This type of "build as you go" capability allows the rescue team to create a system that will work for just about any situation and structural configuration except for the most extreme settings.

So, if your facility seems to be behind the curve regarding the rescue of workers from height, you may need to discuss training options - either for the worker that has fallen and remains suspended from their PFAS, or for the one who is injured or ill at height with no way to get down.

Remember, a worker cannot hang suspended for any length of time without the danger of suspension trauma, which can be deadly.
If we can assist you in assessing your fall protection rescue needs, please contact Pat Furr at pfurr@rocorescue.com, or call our office at 800-647-7626.





read more 

New Pocket Guide from Roco

Monday, February 12, 2018

Newly revised and updated with 82-pages of color drawings and detailed illustrations, Roco's new Pocket Guide features techniques taught in our rescue classes. Made from synthetic paper that is impervious to moisture makes this pocket-sized guide the perfect reference during training or on the scene.

Pocket Guide features: Knots - Rigging - Patient Packaging - Lower/Hauling Systems - Tripod Operations - Low Angle - Pick-off Rescue - High-lines - Confined Spaces and much more.

Reference charts include: Confined Space Types, Suspension Trauma, and Rescue Gear Service Life Chart.

SPECIAL PRICING OF $29.95 THROUGH APRIL 1, 2018 - No Foolin'!

Click here to order your copy today!!

read more 

Roco QUICK DRILL #9 - Belay Systems

Monday, November 30, 2015

Due to their relative simplicity, belay systems rarely see the dedicated training that is often given to the other elements of rescue, such as mechanical advantage or patient packaging. Just because you can rig a 540 Belay Device or tie a Munter Hitch does not necessarily mean you are proficient in their use.

It is important that the belayer can choose the proper belay system for the anticipated load and situation as well as understand the pros and cons of each system. Rescue teams must also be able to properly rig the system, troubleshoot any problems that might arise, catch the load and be able to safely transition from the "catch" to an emergency lowering system, if needed. 

There is a certain degree of finesse and anticipation involved with efficient belaying. It is an important skill only acquired through practice. Allotting more time to belay-specific training will provide payoff in smoother, safer operations during your next rescue.

1. As a team, discuss the belay needs of your environment (type of device or hitch, need for confined space rigging, high-point/low-point usage, one-person/two-person loads, etc.).

2. Divide your team into pairs and have each pair rig a specified device or hitch as a horizontal ground station.

3. While one member operates the device, the other attaches to the working end of the belay line and walks backwards to simulate a moving load. The team member on the line can also simulate a sudden load being applied to the rope at random intervals for the belayer to catch by pulling quickly on the working end of the rope.

4. If using the 540 Belay Device, develop proficiency in releasing a "stuck" load.

5. When using a Munter, work on body/hand position and tying off the Munter with a mule knot and releasing the mule knot while under load.

6. With tandem prusiks, practice converting to a lower system.

7. No matter what device or system, focus on maintaining a steady rate of rope progress through the device, while maintaining the proper amount of slack in the system (maximum 18 inches).

8. Have members switch positions and/or devices as they work on proficiency.

9. If time and training space allow, rig simple lower/haul scenarios where the emphasis will be on belay practice. In these scenarios, focus on the following:
       • Communication between the Rescue Master and the Belayer.
       • Maintaining the appropriate amount of slack in the belay system (no more than 18 inches).

Efficient belay skills are often taken for granted. Be sure to master the use of these critical, lifesaving systems!

read more 

Technical Rescue Incident Preparedness: Hazard Identification and Risk Assessment

Wednesday, July 08, 2015

Reported by James Breen, Special Projects Manager for Roco Rescue, Inc.

Whether you’re a relatively new or a well-established Technical Search and Rescue (TSAR) organization, following an established Hazard Identification and Risk Assessment process is a great way to ensure you’re prepared for the “Big One."

The “Big One” is that incident where you’re called upon to deliver on the organizational investment of having a TSAR capability. A great deal of organizational time, money, and effort is invested in developing, maintaining, and deploying a Rescue Team. Plant Administrators, Fire Chiefs, and elected officials (private board members or public officials) want to see a return on that investment when their rescue service is called into action to save a life.  

The purpose of this article is to assist the Rescue Team Leader (RTL) and aspiring RTL (because we should always be developing our replacement) in establishing a Rescue Team, developing a new TSAR capability, or ensuring an established Rescue Team is adequately prepared for the “Big One."

Firstly, if there is a potential for a TSAR incident to occur within your jurisdiction, NFPA 1670 requires the authority having jurisdiction (AHJ) to address a number of “General Requirements” found in Chapter 4. The review and completion of these requirements are usually a function of the Rescue Team Leader along with key management personnel who authorize, budget, schedule, and equip the Rescue Team.

The format of Chapter 4 is useful for all Rescue Teams, whether newly formed or long established. It is an excellent tool for ensuring some of the foundational aspects of preparedness and organizational structure are (or have been) properly established.  Most “senior rescuers” (not those on Medicare but those that have the respect, time, and experience that makes them leaders in technical rescue) will tell you that the TSAR incident potential, including their hazards and risks, change as industrial processes are updated, installed, or eliminated. 

Key to all emergency response success is planning and preparation. However, incident preparation should be driven by the types of emergency incidents that have a potential for occurring within a given jurisdiction. This is the starting point for determining rescue capabilities, SOP/SOG’s, staffing, training, and equipment. 

The Hazard Identification and Risk Assessment is one method for assessing incident potential. NFPA defines:

•  Hazard Identification - The process of identifying situations or conditions that have the potential to cause injury to people, damage to property, or damage to the environment. 

•  Risk Assessment - An assessment of the likelihood, vulnerability, and magnitude of incidents that could result from the exposure to hazards. 

This process identifies the possibility of conducting TSAR operations within a jurisdiction by evaluating environmental, physical, social, and cultural factors that influence the scope, frequency and magnitude of a potential TSAR incident. It also addresses the impact the incident has on the AHJ to respond and conduct operations while minimizing threats to rescuers (NPFA 1670, 4.2.1 and 4.2.2). The standard lists a number of scientific methodologies in its annex but in the spirit of keeping it, we’ll approach this process using a Preliminary Checklist. (See Sample Checklist.)

Once completed, the checklist may have entries that require further analysis, identify a need to develop or expand a capability, or require entering into an agreement with an external resource. 

This checklist is for day-to-day incident responses under predictable jurisdictional response conditions and should not be used for disaster scenarios where large scale regional and federal resources will be required to mitigate the incident. These scenarios should be addressed through Emergency Response Plans. 

Most fire departments and other emergency response organizations want to maintain a response capability that match potential incidents in order to be operationally effective, provide for rescuer safety, and have positive incident outcomes.  

A Hazard Identification and Risk Assessment is an excellent way to evaluate your organization’s preparedness level for technical rescue incidents based the potential for one to occur; it also aids in the development of specific capability. 

About the Author: James (Jim) Breen is Special Projects Manager for Roco Rescue where he handles a wide variety of projects and provides program support, while still engaging in instructional services. Jim previously served for over 23 years with the Albuquerque Fire Department and retired as the agency's Fire Chief in 2013. He previously had served as a Battalion Commander for the city’s busiest battalion, and has extensive experience in Incident Command and Heavy Rescue Operations. He is a former USAF Pararescueman and a Rescue Squad Manager and Task Force Leader with NMTF-1 where he was deployed to several national disasters.

read more 

Next
1 2 3 4 5 .. 6

RescueTalk (RocoRescue.com) has been created as a free resource for sharing insightful information, news, views and commentary for our students and others who are interested in technical rope rescue. Therefore, we make no representations as to accuracy, completeness, or suitability of any information and are not liable for any errors, omissions, or delays in this information or any losses, injuries, or damages arising from its display or use. All information is provided on an as-is basis. Users and readers are 100% responsible for their own actions in every situation. Information presented on this website in no way replaces proper training!