Roco Rescue

RescueTalk

WE DO RESCUE

Successful Engulfment Rescue in Iowa

Monday, November 26, 2018

Our congratulations to the Burlington (Iowa) Fire Department on a successful grain bin rescue that happened in their community back in May of this year (2018). The incident was reported on Firehouse.com.

The Burlington Fire Department responded to an incident with a man trapped up to his neck inside a corn grain bin in a rural area. Upon arriving at the scene, the initial ambulance unit spoke with the victim’s son who told them that his father was buried up to his armpits inside the bin. The son had thrown a rope down to his father to prevent slipping further down into the corn. Fortunately, the victim remained calm and was able to communicate with the responders.

The bin, designed to hold up to 30,000 bushels of corn, was two thirds full on that morning.
Responders used a Res-Q-Throw Disc typically used in water rescue to lower an O2 bag with an attached non-rebreather mask to the victim.

As additional response vehicles arrived on scene, proper positioning of the apparatus was critical in assisting the rescue. The department’s aerial truck was positioned in a narrow lane between two grain bins and a barn where the aerial was deployed by the crew. The aerial was initially raised to the roof level where crews (two firefighters and two deputies) had assembled including the victim’s son.
To reduce weight on the roof of the structure, one of the deputies and the son came down from the structure.
Crews soon realized that the only way to rescue the gentleman was to set up a rope system and lower a responder into the bin. The aerial was put in place to assist this operation. An incident command vehicle was set up a short distance behind the aerial, offering excellent visibility to the Incident Commander.

Rescue equipment was gathered from various apparatus to include main and secondary life safety ropes as well as other needed gear. Pulleys were attached to the manufactured anchor points on the bottom of the aerial platform. A change-of-direction pulley was fixed to the front of the aerial truck directing the pulling action of the rope to a large grassy area in front of the truck. The main line was rigged with a 5:1 system while the secondary line was rigged with a 2:1 system. CMC MPDs were used as the descent-control device for both lines. On-scene personnel reportedly highly praised these devices.

A firefighter donned a Class III-harness to be lowered through a small opening in the top of the bin to the surface level of the corn, which was approximately 25 feet below. The aerial platform was positioned above the opening and remaining personnel on the room tended the lines. These personnel also assisted in lowering equipment down to the rescuer via a rope.

As part of the equipment being lowered were several milk crates and soda bottom flats, which became an essential part of the operation by distributing the rescuer’s weight on the corn. These crates, positioned in a horse-shoe pattern around the victim, allowed the rescuer to walk across the surface of the corn. A truck belt was lowered into the bin and was positioned around the victim’s chest. It remained attached to the secondary line to prevent the victim from slipping down further into the corn.

Finally, a six-paneled grain rescue tube was lowered into the bin panel by panel. Each panel was placed around the victim and then hammed into place with a TMT Rescue tool. The panels were fastened together to form a solid tube. When secured, the tube protected the victim from shifting corn and relieved some of the pressure being exert on him.
Throughout the process, the ground team kept the rescuer on a short leash to prevent him from falling into the grain himself.

A 4-gas atmospheric monitor with an extra-long sampling tube was used to test the air inside the bin to make sure the rescuer and victim were not in an IDLH atmosphere. The meter was monitored continuously throughout the rescue operation by fire personnel who was positioned on an extension ladder on the exterior of the bin near the opening. He also functioned as a safety officer for operations inside the bin and on the roof and relayed communications for the rescuer inside the space.

A neighboring fire department had brought a special grain rescue auger that was lowered into the bin. The rescuer inserted the auger inside the rescue tube and slowly removed the corn from around the victim’s chest. After the tube was secured around the victim, the IC had called for two relief cuts to be made in the bin – one cut near the victim and the other directly opposite it on the other side of the bin, which was used to empty the bin of corn. Crews used K-12 saws to cut a large triangular opening in the bin wall. The second opening was made by forcing open a door in the side of the bin near the victim. These doors, which swung inward, could only be opened after a significant amount of grain spilled from the cut made on the other side of the bin.

Local road crews which had been on site brought a large-end loader and a smaller skid loading to the scene and used them to push large amount of corn away from the openings in the walls, which enabled a continuous flow of corn.

In approximately 2-1/4 hours after crews arrived on scene, the victim was able to walk from the bin. He refused air transport but consented to ground ambulance transport where he was treated for minor injuries.

Again, our congratulations to the Burlington Fire Department as well as all the agencies involved in making this a successful rescue.

Notes:
The department noted several lessons learned which include:

• Grain bin rescue is a high hazard, low frequency event. The department recognized the importance of its training in ropes and rope operations as well as training with specialized rescue equipment.
• It was determined that the roofs of the grain bins hold far less weight than originally surmised.
• The aerial platform was a key factor in the rescue operation. It was used as an anchor point and for staging equipment. Physical limitations and maximum load-bearing capability must be carefully considered and even more especially when ropes are being utilized. Weight and angles of the aerial must be factored into the operation.

Source: www.Firehouse.com

read more 

Host a Roco Course - Get FREE Training!

Wednesday, November 14, 2018

Has your Fire Department ever thought about hosting a Roco Confined Space Rescue course?

It just might be easier than you think! If your municipal department needs this kind of training, and you have a training site that would be adequate – it could be that simple.

We will be offering this opportunity for up to four (4) municipal fire departments in 2019. All we ask is help from you in promoting the class to local agencies and industries so that we can get a minimum of eight (8) paying students. Then your department would receive two (2) FREE spots in the 5-day class. The more paying students, the more FREE slots your department would earn. It’s a great way to get the training you need at no cost to your organization.

Details:

One of the first things we need is to determine if you have a site that will work for the training. So, you’ll need to send us a few photos of your training site. Then, we will need a signed letter from your Fire Chief (or other authority) providing permission to conduct a Roco course at your training site and invite participants from other organizations. In turn, your department would promote the class in your local area. Roco would provide the instructors and rescue equipment at no charge to you.

If you are interesting in hosting a course next year, please email your site photos along with a letter from your Fire Chief authorizing the use of your facility for the training and for allowing other personnel to attend. Send all information to us at info@RocoRescue.com.

Note: Limited to municipal agencies within the continental United States. Class to be Level I/I-II program. All course participants must be 18 or older, physically fit, and sign waivers prior to participation.
read more 

Rescue Toolbox: Petzl ASAP LOCK

Wednesday, October 31, 2018

Experienced rescuers know there are several ways to belay, or provide a safety line for a live load. Traditional belays include Tandem Prusiks, aperture devices, Munter Hitch, modern devices such as the ID or the MPD, and several others. What all of these devices have in common is the belay system is anchored with the line running through it as the load moves away from the anchors, or the line is pulled through the belay to take in slack as the load moves toward the anchors. These types of belay systems must be tended by a dedicated operator.

But certain professions and even alpinists and sport climbers have been using a different means of providing a belay for many years. This type of belay has been called a self-belay, or a traveling belay and it works by having the belay device attached to a fixed safety line, and the device travels along with the load as it ascends or descends. Window washers and rope access technicians have been relying on this type of belay for many years. Even soloist rock climbers or mountaineers have been using variations of self-belay or for alpinists fixed lines to negotiate difficult pitches in lieu of a roped party climb. 

Up until recently, these traveling belays required the individual on rope to pull the device along both on ascent and decent.
In fact, many times, devices that were not intended to be used as a belay device were and are still being used for this purpose. I’ve seen window washers using handled ascenders as their belay device and try as I might to explain to them that it would have a high potential to fail upon a shock load, they said it was the best they could come up with. The Petzl Shunt was a bit of improvement over handled ascenders, but it still needed to be “towed” up and down the line and the operator needed to remember to let go of the tow string should the mainline fail otherwise the device would not lock onto the line. Most all cam type devices will fail to lock on the rope if the body of the device is held when it is called to arrest a fall. But in the recent past a new “rolling” fall arrestor became available that overcomes many of the limitations of traditional belay devices. It is called the Petzl ASAP.

The ASAP comes in two versions, the original International version and the newer ASAP Lock (pictured here). The primary difference between the two versions is the Lock has a means to lock onto the rope when you get to your intended position, which prevents a large loop of rope building between the top anchor and the device. This feature is critical for individuals that stop to perform a function at height where the potential for wind to blow rope into a growing loop between the device and the top anchor which would create an unacceptable potential freefall distance. Both versions are compatible with 10-13 mm kernmantle rope, but to meet ANSI Z359.15 certification, they must be used with the Petzl RAY 12 mm rope, and specified connectors and energy absorbers. 

One advantage of having a rolling fall arrestor is it reduces the manning requirements as there no longer needs to be an individual operating the belay.
Another advantage is there is no guesswork as to the amount of slack in the belay lane as is possible when the load is out of sight of the belay operator. This is particularly common on longer drops as the weight of the safety line can fool some less experienced operators into believing that is the weight of the load. 

But there are also potential disadvantages to an automatic rolling fall arrestor. If you do not plan ahead and there is a mainline failure and the load is arrested by the ASAP, it isn’t going anywhere. It will be stuck right where it arrests on the safety line – that is, unless you did think ahead and anchor the safety line into a dynamic anchor. We like to use the Petzl ID (pictured here) or the CMC MPD for this purpose. This allows for an immediate emergency lower on the safety line or even a haul by building the dynamic anchor into a Z-Rig.

We have found the ASAP in either version to be a great device on an administrative safety line during tower rescue training, as it closely replicates conditions as they would most likely be in a real world small team, or one-on-one tower rescue, while providing the required level of safety that is relatively transparent to all involved. 

So, come to one of our tower classes to see the ASAP in use, and it may just turn out to be another tool for your rescue toolbox. Here is more information on Roco’s 30-hour Tower Work & Rescue training. For further assistance, please call our office at 800-647-7626. Also, here’s a video on these devices from Petzl.

ASAP Lock in ANSI-approved System Configuration









ASAP International Version (below)

read more 

Using a Crane in Rescue Operations

Sunday, September 30, 2018

We’re often asked, “Can I use a crane as part of my rescue plan?”

If you’re referring to using a crane as part of moving personnel or victims, the answer is “No, except in very rare and unique circumstances.” The justification for using a crane to move personnel, even for the purposes of rescue, is extremely limited. Therefore, it is very important to understand the do’s and don’ts for using a heavy piece of equipment in a rescue operation.

On the practical side, the use of a crane as a “stationary, temporary high-point anchor” can be a tremendous asset to rescuers. It may also be part of a rescue plan for a confined space; for example, a top entry fan plenum. The use of a stationary high-point pulley can allow rescue systems to be operated from the ground. It can also provide the headroom to clear rescuers and packaged patients from the space or an elevated edge.

Of course, the security of the system's attachment to the crane and the ability to “lock-out” any potential movement are a critical part of the planning process. If powered industrial equipment is to be used as a high-point, it must be treated like any other energized equipment with regard to safety. Personnel would need to follow the Control of Hazardous Energy [Lockout/Tagout 1910.147]. The equipment would need to be properly locked out – (i.e., keys removed, power switch disabled, etc.). You would also need to check the manufacturer’s limitations for use to ensure you are not going outside the approved use of the equipment.

Back to using a crane for moving personnel – because of the dangers involved, OSHA severely limits its use. In order to utilize a crane, properly rated “personnel platforms or baskets” must be used. Personnel platforms that are suspended from the load line and used in construction are covered by 29 CFR 1926.1501(g). There is no specific provision in the General Industry standards, so the applicable standard is 1910.180(h)(3)(v).

This provision specifically prohibits hoisting, lowering, swinging, or traveling while anyone is on the load or hook.
OSHA prohibits hoisting personnel by crane or derrick except when no safe alternative is possible. The use of a crane for rescue does not provide an exception to these requirements unless very specific criteria are met. OSHA has determined, however, that when the use of a conventional means of access to any elevated worksite would be impossible or more hazardous, a violation of 1910.180(h)(3)(v) will be treated as “de minimis” if the employer complies with the personnel platform provisions set forth in 1926.1501(g)(3), (4), (5), (6), (7), and (8).

Note: De minimis violations are violations of standards which have no direct or immediate relationship to safety or health. Whenever de minimis conditions are found during an inspection, they are documented in the same way as any other violation, but are not included on the citation.

Therefore, the hoisting of personnel is not permitted unless conventional means of transporting employees is not feasible. Or, unless conventional means present even greater hazards (regardless if the operation is for planned work activities or for rescue). Where conventional means would not be considered safe, personnel hoisting operations meeting the terms of this standard would be authorized.

OSHA stresses that employee safety, not practicality or convenience, must be the basis for the employer's choice of this method.
However, it’s also important to consider that OSHA specifically requires rescue capabilities in certain instances, such as when entering permit-required confined spaces [1910.146]; or when an employer authorizes personnel to use personal fall arrest systems [1910.140(c)(21) and 1926.502(d)(20)]. In other cases, the general duty to protect an employee from workplace hazards would require rescue capabilities.

Consequently, being “unprepared for rescue” would not be considered a legitimate basis to claim that moving a victim by crane was the only feasible or safe means of rescue.

This is where the employer must complete written rescue plans for permit-required confined spaces and for workers-at-height using personal fall arrest systems – or they must ensure that the designated rescue service has done so. When developing rescue plans, it may be determined that there is no other feasible means to provide rescue without increasing the risk to the rescuer(s) and victim(s) other than using a crane to move the human load. These situations would be very rare and would require very thorough documentation. Such documentation may include written descriptions and photos of the area as part of the justification for using a crane in rescue operations.

Here’s the key… simply relying on using a crane to move rescuers and victims without completing a rescue plan and very clear justification would not be in compliance with OSHA regulations.
It must be demonstrated that the use of a crane was the only feasible means to complete the rescue while not increasing the risk as compared to other means. Even then, there is the potential for an OSHA Compliance Officer to determine that there were indeed other feasible and safer means.

WARNING: Taking it a step further, if some movement of the crane (or fire department aerial ladder, for example) is required, extreme caution must be taken! Advanced rigging techniques may be required to prevent movement of the crane from putting undo stress on the rescue system and its components. Rescuers must also evaluate if the movement would unintentionally “take-in” or “add” slack to the rescue system, which could place the patient in harm’s way. Movement of a crane can take place on multiple planes – left-right, boom up-down, boom in-out and cable up-down. If movement must take place, rescuers must evaluate how it might affect the operation of the rescue system.

Of course, one of the most important considerations in using any type of mechanical device is its strength and ability (or inability) to “feel the load.” If the load becomes hung up on an obstacle while movement is underway, serious injury to the victim or an overpowering of system components can happen almost instantly. No matter how much experience a crane operator has, when dealing with human loads, there is no way he can feel if the load becomes entangled. And, most likely, he will not be able to stop before injury or damage occurs.

Think of it this way, just as rescuers limit the number of haul team members so they can feel the load, that ability is completely lost when energized devices are used to do the work.
For rescuers, a crane is just another tool in the toolbox – one that can serve as temporary, stationary high-point making the rescue operation an easier task. However, using a crane that will require some movement while the rescue load is suspended should be a last resort! There are simply too many potential downfalls in using cranes. This also applies to fire department aerial ladders. Rescuers must consider the manufacturer’s recommendations for use. What does the manufacturer say about hoisting human loads? And, what about the attachment of human loads to different parts of the crane or aerial?

There may be cases in which a crane is the only option. For example, if outside municipal responders have not had the opportunity to complete a rescue plan ahead of time, they will have to do a “real time” size-up once on scene. Due to difficult access, victim condition, and/or available equipment and personnel resources, it may be determined that using a crane to move rescuers and victims is the best course of action.

Using a crane as part of a rescue plan must have rock-solid, written justification as demonstration that it is the safest and most feasible means to provide rescue capability. Planning before the emergency will go a long way in providing options that may provide fewer risks to all involved.

So, to answer the question, “Can I include the use of a crane as part of my written rescue plan?” Well, yes and no. Yes, as a high-point anchor. And, no, the use of any powered load movement will most likely be an OSHA violation without rock-solid justification. The question is, will it be considered a “de minimis" violation if used during a rescue? Most likely it will depend on the specifics of the incident. However, you can be sure that OSHA will be looking for justification as to why using a crane in motion was considered to be the least hazardous choice.

NOTE: Revised 9/2018. Originally published 10/2014.


read more 

Rescue Toolbox: Portable Anchors

Thursday, August 09, 2018

PJs use a tripod to extract a patient from a confined space.Portable Anchors – Bipods, Tripods, Gin Poles, and Quads

As rope rescue technicians, we learn early to look for that perfect high-point anchor. You know the one. It’s easy to sling, positioned perfectly in line with the portal and the rescue system, and rated for the anticipated load. We all know that they can be elusive, to say the least.

In locating high-point anchors, we learn to first look straight up for an anchor strong enough and high enough to allow us to clear a vertical litter out of a space (requires about 9 feet). Then we look left and right. Are there beams or substantial anchors high enough and positioned to allow a high-point bridle for our lift? Or maybe there’s an anchor positioned were we may be able to “cowboy” a rope up and over a beam and adjust our end-of-line knot at the appropriate height; and then tie it back to another anchor (extended anchor technique).

But what about those times where we need a high-point anchor, and there is nothing, nada, zilch? No beams, trees, nothing! That’s when we bring our own high-point, also called a portable anchor. 

Portable anchors come in a variety of configurations, the most common being tripods. Even tripods are not all created the same. Some are rated only for equipment, others have different allowable working loads, and they come in a variety of heights. 

There is also the option for bipods, quadpods, monopods (gin poles) and some devices that can transform into all of these configurations. They can be centered over a portal for straight, vertical lifts (tripods/quadpods), straddle the plumb line (bipods), or provide a single high-point in an area with a small foot print (monopods). They can even be designed to cantilever out over an edge to provide a clear path for the ropes and ultimately the rescue package. Determining which one to use would be based on your team’s needs and your type of response area.

So, let’s talk about some of the portable anchors that we like to use, including their capabilities and limitations.

Tripods

The SKED-EVAC® Tripod is a simple tubular aluminum tripod with cast header and feet. It extends to a maximum height of 10 feet at the anchor connection points, which gives a good bit of clearance for vertical litters to clear the bottom edge. At full extension (10 feet), the tripod is proof loaded to 5,280 pounds. The SKED tripod is simple to set up, includes a chain to run through the feet to keep the load stresses off the cast header, includes three anchor points, and adjusts in height for situations where there isn’t enough headroom for full extension.

Eccentric Loading and Resultant Forces

Tripods as well as other portable anchors must be respected when it comes to the “direction of pull” on the rescue system and the relationship to the position of the load. Here are a few terms to be familiar with:

Axial loading: The object is loaded in line with the normal fixed axis point (the center of a tripod, equal force on all legs).
Eccentric loading: The load is no longer axial and is offset from the axis point. (The system puts side-load forces on the anchor, or the load is moved out from under the axis point.)
Resultant: This is the relationship between forces acting on an object. (It is the relationship between the load and the vectoring forces of the rescue system from the portable high-point; it is the bisection of this angle.)

The “rule of thumb” for tripods is the resultant forces must remain inside the footprint of the tripod. That is, if the rescue load is pulling straight down (plumb/axial), and the rescue system vectoring forces are angled outside of the footprint of the tripod, then where does the bisection of that angle fall?

Imagine drawing a circle that connects the legs of the tripod. As long as the load and the rescue system remain inside that circle, the resultant will be acceptable, and the tripod will remain axially loaded and not tip over.

There are some techniques to overcome this limitation such as a directional pulley located within the footprint of the tripod. Another technique, which we call the “Pass Through” method (see illustration at bottom), allows counter acting resultant forces to stabilize the tripod. If your haul line is angled too far outside the footprint of the tripod, or the load is moved outside the tripod footprint, the entire tripod is at risk of toppling over (eccentric loading), which could spell disaster.

So, to keep things simple, we often recommend that all lines are kept within the footprint or to add a low directional within the footprint. This provides a small margin for error when hauling or setting up a directional. Technically, you can set up the directional outside the footprint (or pull the haul line outside the footprint) as long as the resultant force is still inside. 

Just remember to envision all lines as though they were loaded before you load the system. We’ve seen plenty of low directionals that were set up perfectly; however, the anchor strap actually allowed them to fall outside the footprint once loaded. As we like to say, "keep it safe and simple!"(KISS) And to play it safe, keep all lines within the footprint.

Multi-Use Portable Anchors

Portable anchors have progressed way beyond the tried-and-true tripods. We are seeing some pretty versatile systems that can be configured as quadpods, bipods, even monopods. These modern systems provide capabilities that go beyond straight vertical lifts while straddling the hole or entry into the rescue subject’s location.

As with most devices that provide additional or alternate capabilities such as monopods and bipods, they are generally more complex and require additional training to fully understand the forces being applied. The ability to extend an anchor point out over the edge of a containment berm, or a cliff edge in a wilderness rescue, will greatly reduce friction on haul lines and reduce rope abrasion, providing clear movement of the rescue package coming up or going down over the edge. This is something that a tripod just cannot provide. But a better mastery of the effects and relationships of the forces being applied needs to be obtained. Understanding and identifying the resultant force is critical in these situations.

These new generation multi-purpose devices, such as the TerrAdaptor™ or the Arizona Vortex, are designed to be used as tripods, bipods, monopods; or in the case of the TerrAdaptor, as a quadpod. They are third party (UL) certified to NFPA 1983 in symmetric tripod and quad-pod configurations. In addition to the straight vertical capabilities, these devices also provide an “over-the-edge” capability. 

For tight areas such as on catwalks, the A-Frame configuration or bipod can provide that portable high-point where a tripod just can’t fit. For extremely tight quarters or when lightweight gear is needed, they can be rigged as a monopod or gin pole. This requires some advanced knowledge of rigging and tiebacks; but, rigged correctly, it provides high strength and a high-point in places no other system would fit. 

Sometimes the configuration of the structure or the height of your portable anchor does not allow enough overhead to clear the foot-end of a vertical litter. In instances like this, you may need a simple mechanical advantage assist that is attached low on the litter, or a modified Pick & Pivot technique where the lifting point on the litter is changed from the head to the feet once the litter reaches an edge to allow recovery.

Smaller, Lighter, Stronger

To meet the demands of the USAF Pararescuemen (PJs), Roco worked with Skedco to develop the Roco Tactical Mini-Tripod

Reaching about 5 feet at maximum extension with removable legs, it is small enough to carry in the team’s rucksacks, if needed. Its short height also makes it the strongest rescue tripod on the market. Additionally, the removable legs provide the ability to use it as a bipod or A-frame.

Utilizing some simple techniques, a vertical litter patient can be removed from a space with the Roco Mini-Tripod just as easily as with a full-size.

The lighter weight, compact size, and full functionality allow teams with limited manpower and resources to operate without limited capabilities.

Conclusion

It is important to know what your needs are regarding portable high-point anchors. Complete your rescue preplans. And, if they reveal the need to cantilever out over an edge, or that a bi- or monopod may be required, you may want to consider a multi-functional, portable high-point system that provides capabilities beyond a tripod. Whichever device you choose, always make sure you get the proper training. The unexpected loss of a high-point during training or a rescue could be disastrous. So, be safe, know your equipment and know how to use it.

Check out our selection of tripods in our Gear Shop; or, if you need additional training, review our listing of courses. If you would like to speak with one of our instructors, please call us at 800-647-7626 or email info@RocoRescue.com

Here are several tripod techniques from our new Roco Pocket Guide.

Simple B&T M/A with bottom directional. 

High-point pulley & bottom directional used with piggyback or Z-rig M/A systems.

 

 

 

 

 

 

 

 

 

 


Pass-through technique used with piggyback or Z-rig M/A systems.


















read more 

Next
1 2 3

RescueTalk (RocoRescue.com) has been created as a free resource for sharing insightful information, news, views and commentary for our students and others who are interested in technical rope rescue. Therefore, we make no representations as to accuracy, completeness, or suitability of any information and are not liable for any errors, omissions, or delays in this information or any losses, injuries, or damages arising from its display or use. All information is provided on an as-is basis. Users and readers are 100% responsible for their own actions in every situation. Information presented on this website in no way replaces proper training!