Roco Rescue

RescueTalk

WE DO RESCUE

Confined Space Types - Are All Your Bases Covered?

Friday, November 30, 2018

Refineries, plants and manufacturing facilities have a wide range of permit-required confined spaces – some having only a few, while others may have hundreds. Some of these spaces may be relatively open and straightforward while others are congested and complex, or at height. With this in mind, are all your bases covered? Can your rescue team (or service) safely and effectively perform a rescue from these varying types of spaces? Or, are you left exposed? And, how can you be sure?

Rescue Practice & Preplanning

With a large number of permit spaces on site, it would be impossible for a rescue team to practice in each and every one. Plus, in most cases, the spaces are operating, functioning units within the plant. Because of this, section (k) of 1910.146 allows practice from “representative” spaces. This is where the Roco Confined Space Types Chart can make the process easier.

Using OSHA guidelines for determining representative spaces, the Roco Types Chart is designed to assist employers and rescue teams plan for various types of permit spaces.
The chart allows you to categorize permit spaces into six (6) confined space types, which can then be used to prepare rescue plans, determine rescue requirements, conduct practice drills or evaluate a prospective rescue service.

First of all, it's important to note that employers are required by 1910.146 and 1926 Subpart AA to allow rescue teams the opportunity to practice and plan for the various types of confined spaces they may be required to respond. This is critical for the success of the rescue, particularly timeliness, as well as for the safety of the rescuers.

Classifying and Typing Your Spaces
So, get out your clipboard, tape measure, some sketch paper, and a flashlight (if safe to do so) in order to view as much of the interior of the space as you can. And, if you absolutely need to enter for typing and/or rescue preplanning purposes, be sure to do so using full permitting procedures. Gaining access to architectural or engineering drawings may also be helpful in determining the internal configuration when actual entry is not feasible. Armed with this information, it is time to “type” the spaces in your response area using the Roco Confined Space Types Chart.

Over the decades, we’ve seen just about every type of confined space configuration out there. And, while there may be hundreds of permit spaces on site, most of them will fit into one of these six types and require the same (or similar) rescue plan. Of course, there are always unique situations in addition to physical characteristics, such as space-specific hazards or specialized PPE requirements, but this chart can be a valuable tool in the planning and preparation for confined space rescue operations.

We’ve also learned that it is imperative to understand the physical limitations of space access and internal configuration as well as how this affects equipment and technique choices for the rescue team. Referring to the Roco Types Chart and practicing simulated rescues from the relevant types of spaces will help identify these limitations in a controlled setting instead of during the heat of an emergency.

We can all agree that during an emergency is NOT the time to learn that your backboard or litter will not fit through the portal once the patient is packaged.
Six General Types
On the Roco Types Chart, you will note that there are six (6) general types identified, which are based on portal opening size and position of portal. Types 1 and 2 are “side” entries; Types 3 and 4 are “top” entries; and Types 5 and 6 are “bottom” entries. There are two types of each based on portal size, which is significant for rescue purposes. Openings greater than 24-inches will allow packaged patients on rigid litters or rescuers using SCBA to negotiate the opening; whereas, openings 24-inches or less will not.

Portals less than 24-inches will require a higher level of expertise and different packaging and patient movement techniques.
Once the various types have been determined, pay particular attention to spaces identified as Types 1, 3, or 5. Again, these spaces have the most restrictive portals (24-inches or less) and are considered “worst case” regarding entry and escape in terms of portal size. This is very important because it will greatly influence the patient packaging equipment and rescuer PPE that can be used in the space.

Accessibility and Internal Configuration
In addition to the “type” of the space based on portal size and location, another key consideration is accessibility or “elevation” of the portal. While the rescue service may practice rescues from Top, Side and Bottom portals – being at ground level is very different from a portal that’s at 100-ft. Here’s where high angle or elevated rescue techniques are normally required for getting the patient lowered safely to ground level.

Lastly, the internal configuration of a space must be carefully considered for rescue purposes. This will be discussed more in the following section on Appendix F.

Remember, rescue practice from a representative space needs to be a “true” representation of the kind of rescue that may be required in an emergency.
1910.146 Appendix F – Representative Spaces
In Appendix F, OSHA offers guidelines for determining Representative Spaces for Rescue Practice. OSHA adds that “teams may practice in representative spaces that are ‘worst case’ or most restrictive with respect to internal configuration, elevation, and portal size.” These characteristics, according to OSHA, should be considered when deciding whether a space is truly representative of an actual permit space.

(1) Internal Configuration 
What’s inside the space? If the interior is congested with utilities or other structural components that may hinder movement or the ability to efficiently package a patient, it must be addressed in training. For example, will the use of entrant rescuer retrieval lines be feasible? After one or two 90-degree turns around corners or around structural members, the ability to provide external retrieval of the entrant rescuer is probably forfeited. For vertical rescue, if there are offset platforms or passageways, there may be a need for directional pulleys or intermediate haul systems that are operated inside the space.

What about rescues while on emergency breathing air? If the internal configuration is so congested that the time required to complete patient packaging exceeds the duration of a backpack SCBA, then the team should consider using SAR. Will the internal configuration hinder or prevent visual monitoring and communications with the entrant rescuers? If so, it may be advisable to use an additional authorized rescuer as an “internal hole watch” to provide a communication link between the rescuers and personnel outside the space.

What if the internal configuration is such that complete patient packaging is not possible inside the space? This may dictate a “load-and-go” type rescue that provides minimal patient packaging while providing as much stabilization as feasible through the use of extrication-type short spine boards as an example.

(2) Elevation
If the portal is 4 feet or greater above grade, the rescue team must be capable of providing an effective and safe high angle lower of the victim; and, if needed, an attendant rescuer. This may require additional training and equipment. For these situations, it is important to identify high-point anchors that may be suitable for use, or plan for portable high-point anchors, such as a “man lift” or some other device.

(3) Portal Size
Here again, the magic number is 24 inches or less for round portals or in the smallest dimension for non-round portals. It is a common mistake for a rescue team to “test drive” their 22-to-23-inch wide litter or backboard on a 24-inch portal without a victim loaded and discover that it barely fits. However, the problem arises when a victim is loaded onto the litter. The only way the litter or backboard will fit is at the “equator” of the round portal. This will most likely not leave enough room between the rigid litter or backboard and the victim’s chest, except for our more petite victims.

For rescuers, it is already difficult to negotiate a portal while wearing a backpack SCBA. For portals of 24 inches or less, it’s nearly impossible. If the backpack SCBA will not fit, it is time to consider an airline respirator and emergency escape harness/bottle instead. Warning: Do NOT under any circumstances remove your backpack SCBA in order gain access to a confined space through a restricted portal or passageway. It is just too easy for a mask to become displaced.

(4) Space Access – Horizontal vs. Vertical
Most rescuers regard horizontal retrievals as easier than vertical. However, this is not always the case. If there are floor projections, pipe work or other utilities, even just a grated floor surface, it may create an incredible amount of friction or an absolute impediment to the horizontal movement of an inert victim. In this case, the entrant rescuers may have to rely on old-fashioned arm and leg strength to maneuver the victim.

Putting the Roco Types Chart into Practice
The Roco CS Types Chart can assist by first providing a way to classify and type your different kinds of spaces. This information can then be used to design training/practice drills as well as annual performance evaluations to make sure your rescue service is capable of rescue from the varying representative spaces onsite. Of course, this applies whether you use an in-house rescue team, a contracted rescue service, or a local off-site response team. Otherwise, how do you know if you truly have your bases covered? Don’t take that chance. If an incident occurs and the rescue personnel you are depending on are not capable of safely performing a rescue, your company could be culpable.

In section (k), OSHA requires employers to evaluate the prospective rescue service to determine proficiency in terms of rescue-related tasks and proper equipment.
If you need assistance with confined space typing or rescue preplan preparation, please contact us at info@rocorescue.com or 800-647-7626.

read more 

Using a Crane in Rescue Operations

Sunday, September 30, 2018

We’re often asked, “Can I use a crane as part of my rescue plan?”

If you’re referring to using a crane as part of moving personnel or victims, the answer is “No, except in very rare and unique circumstances.” The justification for using a crane to move personnel, even for the purposes of rescue, is extremely limited. Therefore, it is very important to understand the do’s and don’ts for using a heavy piece of equipment in a rescue operation.

On the practical side, the use of a crane as a “stationary, temporary high-point anchor” can be a tremendous asset to rescuers. It may also be part of a rescue plan for a confined space; for example, a top entry fan plenum. The use of a stationary high-point pulley can allow rescue systems to be operated from the ground. It can also provide the headroom to clear rescuers and packaged patients from the space or an elevated edge.

Of course, the security of the system's attachment to the crane and the ability to “lock-out” any potential movement are a critical part of the planning process. If powered industrial equipment is to be used as a high-point, it must be treated like any other energized equipment with regard to safety. Personnel would need to follow the Control of Hazardous Energy [Lockout/Tagout 1910.147]. The equipment would need to be properly locked out – (i.e., keys removed, power switch disabled, etc.). You would also need to check the manufacturer’s limitations for use to ensure you are not going outside the approved use of the equipment.

Back to using a crane for moving personnel – because of the dangers involved, OSHA severely limits its use. In order to utilize a crane, properly rated “personnel platforms or baskets” must be used. Personnel platforms that are suspended from the load line and used in construction are covered by 29 CFR 1926.1501(g). There is no specific provision in the General Industry standards, so the applicable standard is 1910.180(h)(3)(v).

This provision specifically prohibits hoisting, lowering, swinging, or traveling while anyone is on the load or hook.
OSHA prohibits hoisting personnel by crane or derrick except when no safe alternative is possible. The use of a crane for rescue does not provide an exception to these requirements unless very specific criteria are met. OSHA has determined, however, that when the use of a conventional means of access to any elevated worksite would be impossible or more hazardous, a violation of 1910.180(h)(3)(v) will be treated as “de minimis” if the employer complies with the personnel platform provisions set forth in 1926.1501(g)(3), (4), (5), (6), (7), and (8).

Note: De minimis violations are violations of standards which have no direct or immediate relationship to safety or health. Whenever de minimis conditions are found during an inspection, they are documented in the same way as any other violation, but are not included on the citation.

Therefore, the hoisting of personnel is not permitted unless conventional means of transporting employees is not feasible. Or, unless conventional means present even greater hazards (regardless if the operation is for planned work activities or for rescue). Where conventional means would not be considered safe, personnel hoisting operations meeting the terms of this standard would be authorized.

OSHA stresses that employee safety, not practicality or convenience, must be the basis for the employer's choice of this method.
However, it’s also important to consider that OSHA specifically requires rescue capabilities in certain instances, such as when entering permit-required confined spaces [1910.146]; or when an employer authorizes personnel to use personal fall arrest systems [1910.140(c)(21) and 1926.502(d)(20)]. In other cases, the general duty to protect an employee from workplace hazards would require rescue capabilities.

Consequently, being “unprepared for rescue” would not be considered a legitimate basis to claim that moving a victim by crane was the only feasible or safe means of rescue.

This is where the employer must complete written rescue plans for permit-required confined spaces and for workers-at-height using personal fall arrest systems – or they must ensure that the designated rescue service has done so. When developing rescue plans, it may be determined that there is no other feasible means to provide rescue without increasing the risk to the rescuer(s) and victim(s) other than using a crane to move the human load. These situations would be very rare and would require very thorough documentation. Such documentation may include written descriptions and photos of the area as part of the justification for using a crane in rescue operations.

Here’s the key… simply relying on using a crane to move rescuers and victims without completing a rescue plan and very clear justification would not be in compliance with OSHA regulations.
It must be demonstrated that the use of a crane was the only feasible means to complete the rescue while not increasing the risk as compared to other means. Even then, there is the potential for an OSHA Compliance Officer to determine that there were indeed other feasible and safer means.

WARNING: Taking it a step further, if some movement of the crane (or fire department aerial ladder, for example) is required, extreme caution must be taken! Advanced rigging techniques may be required to prevent movement of the crane from putting undo stress on the rescue system and its components. Rescuers must also evaluate if the movement would unintentionally “take-in” or “add” slack to the rescue system, which could place the patient in harm’s way. Movement of a crane can take place on multiple planes – left-right, boom up-down, boom in-out and cable up-down. If movement must take place, rescuers must evaluate how it might affect the operation of the rescue system.

Of course, one of the most important considerations in using any type of mechanical device is its strength and ability (or inability) to “feel the load.” If the load becomes hung up on an obstacle while movement is underway, serious injury to the victim or an overpowering of system components can happen almost instantly. No matter how much experience a crane operator has, when dealing with human loads, there is no way he can feel if the load becomes entangled. And, most likely, he will not be able to stop before injury or damage occurs.

Think of it this way, just as rescuers limit the number of haul team members so they can feel the load, that ability is completely lost when energized devices are used to do the work.
For rescuers, a crane is just another tool in the toolbox – one that can serve as temporary, stationary high-point making the rescue operation an easier task. However, using a crane that will require some movement while the rescue load is suspended should be a last resort! There are simply too many potential downfalls in using cranes. This also applies to fire department aerial ladders. Rescuers must consider the manufacturer’s recommendations for use. What does the manufacturer say about hoisting human loads? And, what about the attachment of human loads to different parts of the crane or aerial?

There may be cases in which a crane is the only option. For example, if outside municipal responders have not had the opportunity to complete a rescue plan ahead of time, they will have to do a “real time” size-up once on scene. Due to difficult access, victim condition, and/or available equipment and personnel resources, it may be determined that using a crane to move rescuers and victims is the best course of action.

Using a crane as part of a rescue plan must have rock-solid, written justification as demonstration that it is the safest and most feasible means to provide rescue capability. Planning before the emergency will go a long way in providing options that may provide fewer risks to all involved.

So, to answer the question, “Can I include the use of a crane as part of my written rescue plan?” Well, yes and no. Yes, as a high-point anchor. And, no, the use of any powered load movement will most likely be an OSHA violation without rock-solid justification. The question is, will it be considered a “de minimis" violation if used during a rescue? Most likely it will depend on the specifics of the incident. However, you can be sure that OSHA will be looking for justification as to why using a crane in motion was considered to be the least hazardous choice.

NOTE: Revised 9/2018. Originally published 10/2014.


read more 

Fatal Trench Collapse Results in Severe Violator Status

Tuesday, September 25, 2018

An Ohio excavating company faces $202,201 in penalties and was placed in OSHA’s Severe Violator Enforcement Program1 after an employee suffered fatal injuries in a trench collapse. 

Inspectors found that the company was working in trenches up to 16-feet deep without adequate cave-in protection. The company failed to: use protective systems to prevent a cave-in; remove accumulating water; properly use ladders to enter and exit the trench; prevent employees from working beneath a suspended trench box; ensure employees wore hard hats; and make provisions for prompt medical attention in the event of injury.

“A trench can collapse in seconds, burying workers under the weight of thousands of pounds of soil,” said Ken Montgomery, OSHA Cincinnati Area Office Director. “This tragedy was preventable, and could have been avoided if the employer had installed required protective systems to prevent a trench cave-in.”

Here's a video showing multiple violations like the ones described here.

1OSHA's Severe Violator Enforcement Program (SVEP) concentrates resources on inspecting employers who have demonstrated indifference to their OSH Act obligations by committing willful, repeated, or failure-to-abate violations. Enforcement actions for severe violator cases include mandatory follow-up inspections, increased company/corporate awareness of OSHA enforcement, corporate-wide agreements, where appropriate, enhanced settlement provisions, and federal court enforcement under Section 11(b) of the OSH Act. In addition, this Instruction provides for nationwide referral procedures, which includes OSHA's State Plan States. This instruction replaces OSHA's Enhanced Enforcement Program (EEP).

read more 

Is Your Rescue Team Ready?

Monday, July 23, 2018

Guidance for improving and maintaining rescue team proficiency...

We all want to succeed, no matter what we are doing. And success is always better than the alternatives…whether a mediocre performance or worse yet, failure. When it comes to rescue, all of a sudden, the difference between success and failure takes on much greater significance.Not only are the lives of the rescue subjects held in the balance, but also the rescuers. Multiple risks are involved with technical rescue and failure may cost the rescuers mightily, and this has been proven too many times. There are many things, however, that rescuers can do to help improve their chances of success, and that's what we will talk about here. 

We have found that the one thing that seems to be a lagging factor is a "lack of proficiency" in performing the required skills either as individuals or as a team. Having rescue preplans, the newest and best equipment, sufficient manning, and reliable communications are all pieces of the puzzle. But all of that becomes nothing more than window-dressing if the team or individuals on the team are unable to perform their duties safely and effectively. This is such an important consideration that several regulations and standards make a point to remind us that proficiency is a high-interest issue. 

For instance, OSHA 1910.146 paragraph K and Appendix F, as well as 1926.1211, require designated rescuers to practice making permit space rescues at least once every 12 months by means of simulated rescue operations in which they remove dummies, manikins, or actual persons from the actual permit spaces or from representative permit spaces. It is our position that this does not even come close to the training time needed to maintain an appropriate level of proficiency. 

Additionally, NFPA 1006 requires rescuers to demonstrate competency on an annual basis. One of NFPA’s recommendations is to attend workshops and seminars, read professional publications, and participate in refresher training as ways technical rescue personnel can update their knowledge and skills. 

I am routinely asked how often a rescue team should practice. And they're always a bit surprised when I do not give them a hard and fast answer such as quarterly or monthly for a minimum of 4 hours. My answer is and will always be, “as often as it takes to ensure you are proficient, as individuals and as a team, to safely and effectively rescue potential victims from any situation you may be called to respond.”

You would be amazed at the spectrum of training schedules that are out there. Some teams practice on a bi-weekly basis and mix in different scenarios to ensure they will not miss any opportunities to improve their skills or to identify any gaps they may have in technique or equipment. Whereas other teams may feel that once a year is all that they need. Knowing how perishable these skills are, we tend to disagree.

It has been our experience that the teams who practice on a very regular basis and really mix it up when they design their training scenarios are the ones who perform best when they come to our facility or we go to theirs for a team performance evaluation (TPE), which can also include an individual performance evaluation (IPE), if desired. The teams and individuals that struggle most during our TPE/IPE visits are the ones that seldom train. And, even though we all call these TPE/IPE visits, we do provide tips and spot training to help correct any deficiencies observed. 

But frequency is no guarantee of excellent performance. It isn’t just about the quantity of training; it must be the quality of training as well. One of the best ways to supplement in-house training is to attend third party refresher training. Or, if it has been a while since a full-on training class, by all means a more extensive and complete training package may be a great option. Roco's annual Rescue Challenge provides an excellent learning experience as well as a way to confirm the true rescue capabilities of your team. 

Technical rescue skills are one of the most perishable skills I have known. Without regular practice and quality training, it is not long before the individual and team skills erode to the point of becoming a liability to the victim and to other team members.

Again, none of us wants to fail - especially on a rescue mission. A good way to avoid this is to dedicate adequate resources to training along with regular refreshers and practice drills. Prepare and practice for your "worst case" scenarios because you just never know when your team may be put to the test. Be ready!

Written by Pat Furr, VPP Coordinator for Roco Rescue, Inc.

About the Author:
Pat Furr has been employed with Roco since 2000 and has been actively involved with technical rescue since 1981. Pat is a Chief Instructor for Roco as well as its VPP Coordinator and Safety Officer. He is also a presenter at national conferences such as ASSE and VPPPA. Prior to Roco, Pat served 20 years in the USAF as a Pararescueman (PJ). His background includes eight years as a member of the 71st Pararescue team in Anchorage, Alaska, where he specialized in mountain and glacier rescue. Pat was a team leader of the 1986 and 1988 PJ teams that summited Mt. McKinley and augmented the National Park Service mountain rescue team. He also spent two tours of duty in Iceland where he put in multiple “first ascent” ice routes.


read more 

OSHA-1926 Dockside Rescue Requirements

Tuesday, July 17, 2018

Roco now offers marine rescue standby services for the Baton Rouge-New Orleans industrial corridor. As with other Roco services, our personnel are experienced emergency responders trained to provide lifesaving skills when it matters most.

All Roco marine standby personnel are First Responder/ CPR/First Aid trained, and most are EMT’s. Our boats are fully equipped with First Aid kits, AEDs and O2 for prompt emergency care.

For construction work over or near waterways, OSHA 1926.106 requires certain safety precautions – including the timely response of a boat to rescue a fallen worker. In fact, according to one OSHA LOI, the retrieval of an employee from the water is required no more than 3 to 4 minutes from the time they entered the water. And, depending on hazards present, it could be required even sooner.

Section 1926.106(d) states:
At least one lifesaving skiff shall be immediately available at locations where employees are working over or adjacent to water.

The intent of the paragraph is to ensure prompt rescue of employees that fall into the water, regardless of other precautions taken to prevent this from occurring. Thus, OSHA requires that employers supply a skiff to affect a prompt water rescue. As a skiff supplies a backup to potential failures of fall protection devices, the use of fall protection systems is not a substitute for the skiff.

The requirement in 1926.106(d) addresses the hazard of falls that may occur in the event of a failure of the operation of fall protection devices or a lapse in their use. An employer is also required to comply with all other applicable standards including, but not limited to, the requirements that an injured employee be treated by medical personnel or an employee certified in first aid within 3 to 4 minutes from the time the injury occurred. This could mean that first aid treatment would have to begin in the lifesaving skiff or boat.

For more information on this service, please contact Roco at 800-647-7626 or email info@rocorescue.com.

Resources: OSHA 1926.106 as well as Letters of Interpretation (LOI’s) dated 8/23/04; 12/5/03; 12/6/91; and 06/13/90.

NOTE:  In this article, Roco cites OSHA 1926.106 which applies to construction activities while working over or near water. For other industries such as shipyard (Part 1915), marine terminals (Part 1917), or longshoring (Part 1918), please refer to those standards for specific requirements, particularly for PFDs and rescue skiffs. OSHA does not require rescue skiffs for all industry activities. However, keep in mind, OSHA sets minimum standards. And, remember, there’s a safe way and a safer way!

read more 

Next
1 2 3 4 5 .. 9

RescueTalk (RocoRescue.com) has been created as a free resource for sharing insightful information, news, views and commentary for our students and others who are interested in technical rope rescue. Therefore, we make no representations as to accuracy, completeness, or suitability of any information and are not liable for any errors, omissions, or delays in this information or any losses, injuries, or damages arising from its display or use. All information is provided on an as-is basis. Users and readers are 100% responsible for their own actions in every situation. Information presented on this website in no way replaces proper training!