Roco Rescue



Local Departments Support Recovery Efforts

Friday, July 07, 2017

On 6/30/17, at approximately 4:23 AM, the East Side Fire Department (ESFD) was contacted by the Denham Springs Fire Department (DSFD) to provide technical rescue assistance on the Amite River Bridge just outside the City of Baton Rouge. DSFD requested high angle rescue personnel to aid the fire personnel already on the scene in rescuing a person who had jumped from the Hwy. 190 bridge span. While in route to the incident, East Side personnel were advised that the person who jumped had fallen approximately 40 ft. and had succumb to his injuries. High angle rescue support was still needed to transport the deceased up to the roadway surface.

Upon arrival, East Side Captain Chris Toucey directed personnel in constructing a mechanical advantage system to be utilized during recovery efforts. Captain Toucey also directed personnel in setting up a high-point anchor using the platform on their tower ladder. A stokes basket was lowered to DSFD personnel who packaged the deceased for transport. Once secured, the stokes basket was hauled up to the road surface using a Z-rig mechanical advantage system. The victim was then transferred to awaiting medical personnel.

Roco would like to commend both the Denham Springs Fire Department and the East Side Fire Department for a safe and efficient recovery.

read more 

Rescue Toolbox: Petzl Rescucender

Wednesday, July 05, 2017

The Rescucender is one more quality piece of rescue hardware for your toolbox. Roco is proud to have been one of the first rescue training companies approached by Petzl to be shown the new device and asked to evaluate it. We were excited to see and use it from Day 1, and we then added it to our training kits as soon as they became available.

There’s no doubt, as computer assisted design (CAD) and precision computer numerically controlled (CNC) machines are used more and more in designing and manufacturing new rescue hardware, we are seeing some absolute gems coming to market. And I say gems, referring to function as well as appearance. There are still times when stamping and casting hardware is appropriate, but if there is a good reason to machine a piece from solid aluminum stock, it generally results in a lighter, smoother, more precise piece of kit.

And that is the case with the new Petzl Rescucender. It is primarily machined out of solid forged aluminum with some bits that are manufactured in a more traditional manner. But the end result is one of those gems. I have been waiting for an NFPA-rated, one-piece mechanical cam for quite some time; and now it is here. My first experience with a one-piece cam was with another Petzl product known as the Shunt. The ease of loading it onto, and stripping it off, the rope made it so much faster and greatly reduced the chance of dropping it. This is especially important when 300 feet or more on a tower!

The limitations of the Petzl shunt made it inappropriate for most technical rescue operations except for certain specialized situations such as during rope access or tower rescue when we are generally dealing with lighter rescue loads. The maximum rope diameter that the Shunt can handle is 11 mm. The new Rescucender is NFPA 1983 T Rated and accepts rope diameters from 9-13 mm.

But as important as the ease of mounting/dismounting is, what I really like about the shunt, and now the new Rescucender is the fact that the shell and the shoe are no longer connected together with a light cable or a thin piece of fabric. I have a few pet peeves, and one of them is seeing rescuers strutting about with a two-piece cam hanging from their gear loop unassembled. The shoe is clipped but the shell is just flapping in the breeze hanging from that thin tether waiting to get jammed into a piece of the structure and break free from the shoe. And, if you don’t believe that happens, you haven’t been doing this long enough, or it may be that your team is really good about assembling their two-piece cams when storing or hanging them from their gear loops. So that whole problem of the shoe ending up in Kansas City while the shell is somewhere in Oshkosh is now eliminated with the introduction of the Rescucender.

The attachment hole in the cam arm is extra-large which allows for rotation of your connector. This doesn’t sound like that big of a deal, but once you start using equipment that allows rotation of the connector from end to end, you will appreciate it. 

As with any piece of rescue equipment, it is important to be properly trained in its use. The action for opening and closing the Rescucender becomes very intuitive in a short amount of time. The engagement and movement of the shoe along its guides oozes precision and the solid feel in your hand lends a high degree of confidence. The device is equipped with a spring that has a light action and is primarily intended to prevent fouling. Our experience is the cam runs rather freely down the rope in vertical applications when attached to a pulley. This provides the convenience of creating longer “throws” with a Z-rig or piggy-back hauling system. The balance between the spring action and the need for the cam to remain open in progress capture applications is spot on. It also has just enough passive camming action to remain in place without back-sliding during rope ascents. It runs free when you need it to, and then grabs the rope when needed.

We all know that the pin needs to be completely seated in most two-piece mechanical cams, the new Rescucender does not have a removable pin but instead has dual safety catches, one on each side of the body. Once the device is installed on the rope, it is important to check that there is no “red” of the visual indicators showing. You will feel and hear a distinct click when the safety catches engage. Additionally, the problem of installing the shoe the wrong way in the shell is now eliminated as the Rescucender does not allow 180 degree rotation of the shoe in relation to the shell.

I continue to be excited about the evolution of rescue equipment. It doesn’t seem that long ago that we moved from goldline ropes to kernmantle, but years would go by without seeing any major breakthroughs in modern equipment. Well, those days are over. It seems that the digital era, as well as the push from various agencies and users, combined with the “out-of-the-box” thinking of equipment designers is driving the rapid emergence of better and better rescue mousetraps.

It’s a good time to be in rescue, it always has been, but the versatility, precision, and safety of modern equipment sure makes our tasks easier today than ever before.

Article by Pat Furr, Safety Officer & VPP Coordinator for Roco Rescue, Inc.
Pictures courtesy of Petzl

read more 

Tougher Penalties for Harming First Responders

Friday, June 23, 2017

House passes bill to toughen penalties for harming first responders

Washington – In response to a spike in the number of police officers killed in the line of duty in 2017, the House on May 18 passed a bill that seeks stricter penalties for people who harm or attempt to harm first responders.
The Thin Blue Line Act, sponsored by Rep. Vern Buchanan (R-FL), would make the murder or attempted murder of a police officer, firefighter or other emergency personnel an “aggravating” factor in death penalty determinations, a press release from Buchanan’s office states. If approved, the law would apply to crimes under federal jurisdiction.

As of June 20, the National Law Enforcement Officers Memorial Fund counted 63 police fatalities in 2017 – an increase of 34 percent from that same date in 2016. Twenty-two of the fatalities were firearms-related (up 10 percent from the previous year), 25 were traffic-related (up 19 percent) and 16 were from other causes (up 167 percent), according to the organization.
“America’s police officers and first responders are the first ones on scene to help those in harm’s way,” Buchanan said in the press release. “These brave men and women and their families put it all on the line and deserve our unwavering support. Getting this bill signed into law will protect those who serve our communities and send a clear message: targeting or killing our first responders will not be tolerated.”
The bill, approved by a 271-143 vote, now moves to the Senate for consideration.
Source: Safety and Health Magazine June 2017
read more 

Calculating Compound M/A

Tuesday, June 13, 2017

We recently had a request for additional information beyond what was shown in our “Theory of Mechanical Advantage” video by Chief Instructor Dennis O'Connell. The reader would like to know more about calculating compound mechanical advantages.

First of all, a simple mechanical advantage (MA) is quite easy to calculate as long as you follow a couple of basic rules.

MAs are generally expressed in numeric ratios such as 2:1, 3:1, 4:1, etc. The second digit of the ratio, or the constant "1" represents the load weight. The first digit, or the variable 2, 3, 4, etc. represents the theoretical factor that we divide the load weight by, or inversely multiply the force we apply to the haul line.

I say theoretical as these calculations do not take into account frictional losses at the pulleys and resistance to bend as the rope wraps around the pulley tread. So a 3:1 mechanical advantage would make the weight of a 100-pound load feel like 33 pounds at the haul line, but we do lose some advantage due to those frictional losses. An even more important consideration is the fact that we multiply our hauling effort by the variable, which is important to understand when we think about the victim or an on-line rescuer that has become fouled in the structure. This is also important when considering the stresses on the haul system including the anchor, rope, and all components in the system.

We also need to pay attention to the amount of rope that must be hauled through the system to move the load a given distance. If we are using a 4:1 MA and need to move the load 25 feet, we need to pull 100 feet of rope through the system (4 X 25 feet = 100 feet).

To calculate a simple MA, remember this: if the anchor knot is at the load, it will be an odd mechanical advantage (3:1, 5:1, 7:1, etc.). If the anchor knot is at the anchor, it will be even (2:1, 4:1, 6:1, etc.) “even/anchor-odd/load.” And if you count the number of lines coming directly from the load, you will determine the variable (remember not to count the haul line if it passes one final change of direction pulley). For instance, if the knot is at the anchor and there are four lines coming from the load, this will result in a 4:1 simple MA. And if your haul line is being pulled away from the anchor, that only means you have created one final change of direction which oftentimes is done to allow the addition of a progress capture device (ratchet), or simply to make it a more convenient direction of pull. But this 5th line, called the haul line, does not come directly from the load. It comes from the final directional pulley to the haul team and is not to be counted in the simple MA ratio. We would call this set up a 4:1 MA with a change of direction (CD).

Calculating compound MAs is also quite easy. Compound MAs (sometimes called a stacked MA) simply means we are attaching a second MA to the haul line of the original MA. When we do so, we multiply the first digit of the original MA by the first digit of the second MA. If you attach a 2:1 MA to the haul line of a 4:1 MA (2 X 4 = 8), you end up with an 8:1 compound MA. Keep in mind that we have added even more frictional losses into this system, but it is still a pretty powerful MA.

There are potential benefits as well as potential penalties when using compound MAs. One benefit includes using less gear when stacking MAs. For instance, to build a simple 6:1 MA, you will require at least five pulleys, and if you want a final CD, that would require one last pulley for a total of six pulleys. If you decide to build a 6:1 compound MA, you can get away with as few as three pulleys by attaching a 2:1 MA to the haul line of a 3:1 MA. If you wanted one final CD, you would again add one more pulley for a total of four pulleys. The obvious advantage is that fewer pulleys are required, but hidden in there as another advantage is fewer pulleys for the rope to wrap which translates to less frictional loss and bend resistance.

Another benefit to stacking MAs may be the reach you need to attach to the load. If the load is 25 feet away from the anchor and you are using a 6:1 simple MA, you will need at least 150 feet of rope, plus some extra to tie the anchor knot, and some spare to wrap over the final directional - if you use one. If the load is 50 feet below the anchor and you want to stick with the simple 6:1 MA, you are looking at a minimum of 300 feet of rope.

So, what if we send a 3:1 MA down from the anchor to the load 25 feet below and attach a 2:1 to the haul line of the original 3:1 to build a 6:1 compound MA?

Well, in this case we would need 75 feet of rope plus some extra for knots for the original 3:1, and two times the length of the compounding MA throw. Throw? What the heck is throw? Throw is a term we use when we have a limited distance between the compounding MA anchor and where we can safely attach the compounding MA to the haul line of the original MA.

In the diagram below you can see the original 3:1 MA extending from its anchor to the load. The added MA, which in this case is a 2:1 has a total throw of 10 feet which requires a little over 20 feet of rope to construct. So, if we add the 75+ feet of rope required for the original 3:1 to the 20+ feet for the added 2:1, we arrive at a bit over 95 feet of rope required for this compound 6:1 MA to reach a load 25 feet from the anchor. This can be two separate ropes, one a bit over 75 feet and a second a bit over 20 feet, or it can be one rope a bit over 95 feet that we can treat as if they were two separate ropes. More on that in a bit.

Remember that we must consider the amount of rope that we need to pull through the system in order to move our load the required distance. So, using a 6:1 compound MA to move the load 25 feet we must pull a total of 150 feet of rope through the system. Whoa, wait a minute! I thought we determined that our total rope needs were only a bit over 95 feet, so how did we come up with 150 feet of rope? One of the disadvantages of compound MAs is the need for resets when the throw is not long enough to move the load the needed distance. So, even though we are using in the neighborhood of 95 feet of total rope, we are pulling the same section of rope through the second MA multiple times.

Well, this is one of the big disadvantages of a compound MA. We need to reset the system multiple times to move the load the required distance. To help envision a reset cycle, let’s assume we have our original 3:1 mounted to an anchor, and 25 feet from that anchor is the 3:1 attached to the load. The haul line of the original 3:1 goes through a final CD, and we have attached a ratchet at that final CD to capture the progress of the loads movement. One option is to find a second anchor and in this case we found one 10 feet away from the final CD of the 3:1. We tie an anchor knot and attach it to that second anchor and route the remaining 20+ feet of rope through a pulley which we attach to the haul line of the original 3:1 with a rope grab. We now have our 2:1 pulling on the haul line of a 3:1 resulting in a 6:1 compound MA.  But…… and there’s always a “but,” isn’t there? We can only move the load a bit over 3 feet at a time before we completely collapse the 2:1 and need to reset it for the next haul. Remember, the 2:1 only has a 10-foot travel or “throw” and that distance is divided by 3 as it is pulling on a 3:1 MA. In addition to that, we have pulled about 20 feet of rope through the 2:1 just to move the load a bit over 3 feet. In order to move the load the entire 25 feet we will need to reset the system about 8 times and that is some slow going. Just to point out one option to speed up the haul by reducing the amount of resets needed, if you sent the original MA to the victim as a 2:1 and then stacked a 3:1 MA with 10 feet of throw onto that 2:1, you would still have your compound 6:1 but would only need to do about 5 resets and could do it with a bit over 80 feet of rope.

There are all sorts of options when deciding what type and ratio of MA to use in a rescue effort. You can get pretty creative when building MAs, but be aware that creativity can sometimes lead to crazy. Remember the KISS principle…keep it simple and safe.

If you are overbuilding an MA just to show a cooler way of doing it, you may be missing the point of the job. There is someone in trouble that is relying on you getting them up and out of their predicament, and sometimes we can get a little carried away with our creativity, especially when it comes to MAs. 3:1 Z-rigs are a great option especially with the addition of devices like the Petzl ID or the CMC MPD as your first MA change of direction and progress capture device. Plus, this gives you the ability to convert to a lower with friction control already built in. But you can really complicate things by compounding a second MA onto a Z-rig to get a higher ratio MA. You will soon learn that now you have to perform two separate resets of the haul cams. And, if you are out of sequence in the reset, the haul cam of the second MA will jam into the traveling pulley of that system and stop you in your tracks. There are some tricks to really make the resets for this system go nicely, but that will have to wait for another day.

There are hundreds of variations that you can use for compounding MAs, but once again I caution you to remember KISS. I have my favorites and every once in a while the situation calls for something a little different, and that’s where understanding the advantages and disadvantages of the systems is of great value.

For additional video resources on mechanical advantage as well as other techniques and systems, visit Roco Resources.

read more 

Cal/OSHA Cites Two Companies After CS Death

Tuesday, May 30, 2017

On Oct. 21, 2016, a D&D Construction employee entered a drainage shaft to clean out mud and debris. No personal fall protection was utilized as the worker descended via bucket 10 ft. into the shaft, which was 4.5 ft. in diameter and lined with concrete.

At some point, the worker lost consciousness due to the oxygen deficient atmosphere in the confined space and fell 40 ft., then drowned in a foot of water.

“Cal/OSHA launched a confined space educational program to bring attention to the dangers and preventable deaths that occur in confined spaces,” said Cal/OSHA Chief Juliann Sum in a statement. “The program helps employers identify hazards and create effective safety plans that include air monitoring, rescue procedures and training before work begins.”

General contractor Tyler Development was constructing a single-family residence in the Bel Air area and hired subcontracted D&D Construction to install and service reinforced concrete posts known as caissons on the property, according to the agency’s report.

The state-run occupational safety unit cited Tyler Development and D&D Construction Specialties Inc. a combined $352,570 for ten serious and willful health and safety violations following an investigation. Cal/OSHA said neither company was in compliance with required confined space procedures.

D&D Construction previously was cited in 2012 for similar safety violations at a different job site.

In total, D&D has to pay a proposed $337,700 for 13 violations, including two willful serious accident-related, one willful serious, one serious accident-related, six serious, and three general in nature.

According to Cal/OSHA, the company failed to:
• ensure safe entry into the confined space
• have an effective method to rescue the worker in the confined space in an emergency
• test the environment to determine if additional protective equipment, such as a respirator or oxygen tank, were required to work safely in the shaft.

Tyler Development was cited $14,870 for five violations, three of them serious, for a failure to:
• evaluate the worksite for possible permit-required confined spaces
• ensure that the subcontractor meets all requirements to comply with a permit space program
• protect workers from the hazard of impalement by guarding all exposed reinforced steel ends that extend up to six feet above the work surface with protective covers

A full copy of the report is available here.

read more 

Previous Next
1 .. 4 5 6 7 8 .. 61

RescueTalk ( has been created as a free resource for sharing insightful information, news, views and commentary for our students and others who are interested in technical rope rescue. Therefore, we make no representations as to accuracy, completeness, or suitability of any information and are not liable for any errors, omissions, or delays in this information or any losses, injuries, or damages arising from its display or use. All information is provided on an as-is basis. Users and readers are 100% responsible for their own actions in every situation. Information presented on this website in no way replaces proper training!