Roco Rescue

RescueTalk

WE DO RESCUE

Rescue Toolbox: Webbing Adjustment Technique

Tuesday, February 04, 2014

Here's a handy Webbing Adjustment Shortening Technique for adjusting webbing length when rigging litters.


To watch more safety tips from Director of Training Dennis O'Connell check out our YouTube channel. Keep checking back for more videos from Roco Rescue.

read more 

Horizontal Pick & Pivot Rescue Technique

Thursday, October 24, 2013

The video below shows a Horizontal Pick & Pivot technique taking place onboard the USS Kidd in downtown Baton Rouge, LA. The scenario took place this week, at a Roco open-enrollment class - Industrial Rescue III, and features students from Texas, Louisiana & Alaska. This technique is critical when performing a horizontal raise, when there are no available high-points.

This predominantly "scenario-based" course challenges individual rescuers (and teams) in a wide variety of confined space and high angle rescue exercises. With the addition of new and more advanced techniques, students will enhance their skills and teamwork abilities in numerous practice scenarios. As the problems progress in difficulty, students get a feel for executing an entire rescue operation from start to finish.

By placing specific time limitations on each scenario, Industrial Rescue III gives students the experience of "working under pressure," just as in a real emergency. You can see from the short video above taken by a chief instructor, Roco classes provide a thrill a minute. Great job guys!

read more 

Lanyard Safety

Tuesday, December 04, 2012

Here's a question from one of our readers: How can you test a lanyard to determine if it is safe to use? Is there a standard checklist or procedure?

Answer from the Roco Tech Panel: As with all safety and rescue gear, we recommend that you inspect, use and care for it in strict accordance with the manufacturer’s instructions. Of course, all equipment should be carefully inspected before and after each use. And, as we always say, “If there’s any doubt, throw it out!” Sometimes it’s less expensive to simply replace the gear versus going through any elaborate testing process. We did find the following information regarding lanyard inspections in an “OSHA Quick Takes” document. Thank you for your question!

Lanyard Inspection

To maintain their service life and high performance, all belts and harnesses should be inspected frequently. Visual inspection before each use should become routine, and also a routine inspection by a competent person. If any of the conditions listed below are found, the equipment should be replaced before being used.

When inspecting lanyards, begin at one end and work to the opposite end. Slowly rotate the lanyard so that the entire circumference is checked. Spliced ends require particular attention. Hardware should be examined under procedures detailed below.

HARDWARE
Snaps: Inspect closely for hook and eye distortion, cracks, corrosion, or pitted surfaces. The keeper or latch should seat into the nose without binding and should not be distorted or obstructed. The keeper spring should exert sufficient force to firmly close the keeper. Keeper rocks must provide the keeper from opening when the keeper closes.

Thimbles: The thimble (protective plastic sleeve) must be firmly seated in the eye of the splice, and the splice should have no loose or cut strands. The edges of the thimble should be free of sharp edges, distortion, or cracks.

LANYARDS
Steel Lanyard:
While rotating a steel lanyard, watch for cuts, frayed areas, or unusual wear patterns on the wire. The use of steel lanyards for fall protection without a shock-absorbing device is not recommended.

Web Lanyard: While bending webbing over a piece of pipe, observe each side of the webbed lanyard. This will reveal any cuts or breaks. Due to the limited elasticity of the web lanyard, fall protection without the use of a shock absorber is not recommended.

Rope Lanyard: Rotation of the rope lanyard while inspecting from end to end will bring to light any fuzzy, worn, broken or cut fibers. Weakened areas from extreme loads will appear as a noticeable change in original diameter. The rope diameter should be uniform throughout, following a short break-in period. When a rope lanyard is used for fall protection, a shock-absorbing system should be included.

Shock-Absorbing Packs
The outer portion of the shock-absorbing pack should be examined for burn holes and tears. Stitching on areas where the pack is sewn to the D-ring, belt or lanyard should be examined for loose strands, rips and deterioration.

VISUAL INDICATIONS OF DAMAGE

Heat
In excessive heat, nylon becomes brittle and has a shriveled brownish appearance. Fibers will break when flexed and should not be used above 180 degrees Fahrenheit.

Chemical
Change in color usually appears as a brownish smear or smudge. Transverse cracks appear when belt is bent over tight. This causes a loss of elasticity in the belt.

Ultraviolet Rays
Do not store webbing and rope lanyards in direct sunlight, because ultraviolet rays can reduce the strength of some material.

Molten Metal or Flame
Webbing and rope strands may be fused together by molten metal or flame. Watch for hard, shiny spots or a hard and brittle feel. Webbing will not support combustion, nylon will.

Paint and Solvents
Paint will penetrate and dry, restricting movements of fibers. Drying agents and solvents in some paints will appear as chemical damage.

CLEANING FOR SAFETY AND FUNCTION

Basic care for fall protection safety equipment will prolong and endure the life of the equipment and contribute toward the performance of its vital safety function. Proper storage and maintenance after use is as important as cleaning the equipment of dirt, corrosives or contaminants. The storage area should be clean, dry and free of exposure to fumes or corrosive elements.

Nylon and Polyester
Wipe off all surface dirt with a sponge dampened in plain water. Squeeze the sponge dry. Dip the sponge in a mild solution of water and commercial soap or detergent. Work up a thick lather with a vigorous back and forth motion. Then wipe the belt dry with a clean cloth. Hang freely to dry but away from excessive heat.

Drying
Harness, belts and other equipment should be dried thoroughly without exposure to heat, steam or long periods of sunlight.

For the complete OSHA Quick Takes document, click here.

read more 

Update: Question to OSHA on Individual Retrieval Lines

Tuesday, September 18, 2012

Report submitted by John Voinche', Sr. Vice President/COO, Roco Rescue

In July, a group of Roco instructors conducted a Confined Space Rope Rescue demonstration for OSHA representatives from Washington, DC. These agency officials represented both General Industry and Construction. This demo was used to clarify our concerns about a pending Letter of Interpretation (LOI) concerning Individual Retrieval Lines in confined spaces that was brought to our attention last year. Here is a little background…

Last July (2011), we brought you a story entitled, “What’s the talk about individual retrieval lines?”  At the heart of the issue was a pending LOI from OSHA regarding how retrieval lines are used inside confined spaces. [Note: This LOI is pending and has not been published in the Federal Register.]

Here’s the question to OSHA from a gentleman in Maryland which initiated the LOI…

“Does OSHA 1910-146 (k)(3) require that each individual entrant, including workers and/or rescuers, entering into a confined space be provided with an independent retrieval line or can more than one entrant be connected to a single retrieval line?”

The proposed answer from OSHA stated that each entrant should have an “individual” retrieval line, despite the fact that the word “individual” is not included in this section of the standard [1910.146 (k)(3)(i)].
 
Roco then wrote a letter to OSHA requesting clarification about the forthcoming LOI. A portion of our letter stated that, “This pending interpretation is different from our understanding of what’s required by the regulation. While this particular technique is one option of providing external retrieval, there are other alternatives currently being used by rescuers.”

One of the techniques being used is a “single retrieval line” for multiple entrant rescuers. The first rescuer to enter the space is attached to the retrieval line via an end-of-line Figure 8 on a Bight. Any subsequent rescuers enter the space attached to the same retrieval line using mid-line Butterfly knots. In our opinion, this satisfies the intent of the regulation in that each entrant is attached to a retrieval line.

However, in the case of multiple entrants, requiring “individual” lines as mentioned in the proposed LOI may represent an entanglement hazard. This, in effect, may cause entrants to opt out of using retrieval lines due to potential entanglement hazards (which is allowed by the standard if entanglement hazards are a concern). So, in our opinion, this effort to bring more clarity to the issue may further complicate the matter.
 
Again, we believe the single retrieval line method described above is one way to rescue entrants while satisfying the intent of the standard at the same time. More background is available by reading our original story.

Fast-forward back to July 2012… the demonstration lasted about four hours. During this time, Roco demonstrated numerous retrieval line techniques as well as the “pros and cons” for each system. There was a great deal of discussion back and forth on how this pending letter of interpretation could affect rescuers and entrants – and their ability to perform their jobs safely and efficiently.
 
We would like to thank OSHA for allowing us to offer our feedback concerning this topic. We also want to say a special thanks to the Baltimore Fire Department for allowing us to use their training facilities. We don’t know when a final LOI will be issued, but we will keep you posted!
read more 

SKED Procedural Change with Cobra Replacement Buckles

Thursday, May 24, 2012

Here at Roco, we have recently discovered a minor issue when the SKED stretcher is updated with Cobra buckles. The Cobra buckle replacement system is attached by girth-hitching the components into the grommets. The girth hitch takes up more room in the grommets than the sewn loop that was previously used. This makes it more difficult to pass the vertical bridle rope through the grommet holes that we’re accustomed to using.

Skedco was contacted and has approved the following alternative method (see photo). After tying a square knot at the bottom of the SKED, bring the tail ends of the rope back up and pass them through the bottom grommet hole of the handles before tying the second square knot. Note: “Handle” holes may be used with the old style buckle system.

read more 

Mechanical Advantage Systems: How Strong?

Friday, May 11, 2012

In this and upcoming articles, we want to give you an idea of the actual forces that are put on M/A systems versus theoretical forces that you may read about. What’s the difference?

With theoretical, we’re referring to the amount of force that is “supposed” to be produced, while the actual is just that…the actual amount of force that is produced when the system is built and operated.

For example, calculating the force if you built  a 3:1 mechanical advantage “on paper” (theoretically) versus physically building the system. With the actual system, you would have to consider the friction loss created by the system components, so the “actual M/A” may be 2.5:1 with the same 3:1 system.

We decided to do some informal testing out at the Roco Training Center with the assistance of some of our students. The systems were tested as they are generally used in the field. The numbers shown are an average of the tests we conducted. The average is from a random sample of 10 to 20 tests using the same equipment and set up. We used a Dillon 25,000 lbf dynamometer with an error factor of +/-20 lbf. Note: These test numbers are designed as a reference only and should not be used as exact force data.

Test #1: Straight-line Pull

Student Set-up: Students were asked to pull on the line in a horizontal plane and exhibit as much force as they could without tugging/jerking the line. They were then asked to maintain that tension and tug/jerk the line.

Equipment Set-up: 12-ft of 1⁄2” PMI rope tied with a Figure 8 knot and attached to the dynamometer by two 2-ft pieces of 1” basket-looped webbing and two auto-locking steel carabiners to a rigid anchor with another basket-looped webbing loop.

What the Numbers Mean

First of all, they will serve as a baseline for future informal tests when comparing different types of M/A systems. We will evaluate the efficiency of the different systems as well as the possible forces that are put on the components of the system when using typical rescue haul teams.

Grasping at Ropes

One interesting fact that we can take away from these numbers is that even though the vast majority of the persons involved in the testing (random rescue students) weighedin excess of 160 lbs, they were only able to generate a maximum of 160 pounds of force on the 1⁄2-inch rope. This is largely due to the student’s ability to grasp and hold onto the 1⁄2” line before it pulled through their hands.

Similar tests using 9mm rope had an average force of 120 lbf for a single-person pull. There was only a slight difference of about 2 lbf between the 1⁄2-inch rope and the 9mm rope. We had anticipated a greater disparity as the rope diameter decreased and the ability to grasp the smaller line was lessened. However, we did observe that with the smaller diameter rope, haulers had a tendency to twist their hands making a 90-degree turn in the rope. This added additional friction making it possible to put more force on the line before it slipped.

Stay tuned as we continue this informal, real-world testing in future blog posts. It should be interesting to see how the forces translate from 1,2,3, and 4-person Haul Teams when using these various Mechanical Advantage systems.
read more 

Roco Techniques Right at your Fingertips!

Wednesday, October 05, 2011

The newly revised Roco Pocket Guide features fifty-eight pages of color illustrations of the actual techniques and systems taught in our classes.

Made from a synthetic paper impervious to moisture, this pocket-sized field guide will hold up in the most unfavorable environments.The newly revised Roco Pocket Guide features fifty-eight pages of color illustrations of the actual techniques and systems taught in our classes. Made from a synthetic paper impervious to moisture, this pocket-sized field guide will hold up in the most unfavorable environments.
Tabbed sections offer a quick reference in the following topics: knot tying techniques, rope care tips, anchoring, belaying, patient packaging, litter rigging, lowering systems and a confined space types chart.

Roco's New Pocket Guide is the perfect reference when working in the field. Retail price: $ 35.00

You can purchase a copy of Roco’s NEW Pocket Guide (Model # R910C) for $35.00 by visiting our online shop, or order by phone at 800-647-7626.

Register to WIN a Roco Pocket Guide.
read more 

Proper Training Required: Why it’s so important!

Monday, August 08, 2011

In this article, we want to provide some background on our experiences with users of rescue equipment, and why we feel proper training is so important.  In the past 30 years, we’ve had the honor of having thousands of students attend our rescue training classes.  Attitudes toward the statement “Do not use this equipment without proper training!” runs the gamut. It goes from “I never read the instructions,” to “I read, understand, and follow them to the T.” As our students come in all shapes, sizes, experience levels, attitudes, and needs, this is understandable.  However, there’s one common denominator, they have come to us for training – and that’s our critical role.

In many cases, an entire rescue team will show up for training with all their rescue gear in tow. They will then tell us that they have never received training on, nor really understand the proper use of their equipment.

So, it really boils down to this – what are the advantages of receiving training on the proper use of the equipment?

Obviously, the primary concern is safety – safety of the users and the rescue subjects. Another critical point includes using the equipment contrary to the manufacturer’s instructions, which can lead to questions of liability. While some manufacturers provide complete and “easy to understand” instructions for use of their equipment, others provide just enough to get the box open.

Note:  While it’s not an NFPA 1983 requirement, most manufacturers do include a statement concerning proper training prior to use.  In fact, there is no NFPA requirement that instructions for use be provided by the manufacturer.

Here are some important questions to consider

What are the working load limitations of the item?  If the gear is used for both planned work activities and for rescue activities, the maximum working loads may be different depending on the application.  In some cases, additional rigging configurations are required for exceptional uses and heavy loads.
What are the effects of using the equipment in a variety of configurations? Are there load multipliers involved in certain configurations that need to be addressed? What are the effects of eccentric loads on the equipment?  Many equipment items are to be used in static load applications only, and can be damaged or catastrophically fail if subjected to dynamic loads.  Oftentimes these issues are not addressed in the user manual, but may be a need to know and understand consideration.

Also, using the item as part of a system may not be covered in the user manual.  It’s important to understand this so that the equipment can be used to its full advantage – and to make sure it’s not subjected to unacceptable loads when used in a system.  Many times the user manual provides bare bones instructions for use and doesn’t cover any instruction for use as part of a system. Nor does it cover the precautions for use as part of a system.

While it seems that more and more manufacturers are moving towards pre-built, engineered systems, it’s not always feasible (or advantageous) to use a pre-built system. However, it is very common to use multiple bits of hardware, software, and rope to create a “build-as-you-go” system that’s appropriate for the job.  Without receiving the proper training on the compatibility of components used in a system, the user may be creating an unsafe condition or missing out on an opportunity for a more efficient solution. Or, miss out on the expanded use of equipment they already have in their cache.

In addition, more rescue gear is being designed to perform multiple functions.  It’s not uncommon for us to hear students say something like, “Wow, I didn’t know it could do that, too!”  Items that are put into the rescue equipment cache with the belief that it is designed to perform one function only, may be another opportunity lost.

Needless to say, we are big advocates of multifunction equipment.  This provides for a smaller, lighter, and quite possibly less expensive rescue equipment cache. It also provides the ability to adapt a given rescue plan and shift the role of the equipment from one function to another.  Typically, there are opportunities to use equipment in a manner that it can be quickly converted from one function to another as part of the plan.  Without the proper training, this may not be obvious by simply reading the user manual.

Finally, how clear is the user manual in explaining criteria for inspection and removal from service?  Depending on what’s provided by the manufacturer (i.e., text and graphics), a piece of equipment may require additional training for the proper inspection points and reasons for taking it out of service.

With that said, we hope it’s perfectly clear that the statement, “proper training is required prior to use” should be taken to heart. It always saddens us to hear of incidents where rescuers are hurt or injured while training for, or in the performance of their duties…especially when the root cause is listed as inadequate training.  Hopefully, you are seeking quality training from a reputable training institution on the proper use of your equipment.  Not just to satisfy a liability issue, but to keep your rescuers safe.  It also allows them to understand and take full advantage of the equipment in their rescue cache – keeping it safe, simple, and effective!
read more 

What’s the talk about individual retrieval lines?

Wednesday, July 20, 2011

Because it is important to keep our readers and students updated, we wanted to share the following information with you. Please note that this issue is not resolved as of this time, and we have a letter submitted to OSHA for clarification. However, we wanted to keep you in the loop so that you can make better decisions when it comes to your rescue preplanning and operations.

It has recently come to our attention that there is a pending OSHA Letter of Interpretation (LOI) regarding the requirement for an “individual retrieval line” for each entrant. This pending interpretation is different from our understanding of what’s required by the regulation (1910.146). While this particular technique is one option of providing external retrieval, there are other alternatives currently being used by rescuers.

As mentioned above, Roco has submitted a detailed letter to OSHA for a clarification, stating our position that the use of individual lines for entrants in all cases is problematic for a number of reasons. Although OSHA’s response in its letter of interpretation is ambiguous as to its applicability to entry rescue operations, in our commitment to follow the intent of all OSHA standards, Roco is assuming that OSHA’s response was intended to apply to all entries, including rescue entries. Therefore, we will teach and use “individual lines” for the time being until we get further clarification from OSHA.

Question to OSHA:
In a request for clarification, a gentleman from Maryland had asked this question, “Does OSHA 1910-146 (k)(3) require that each individual entrant, including workers and/or rescuers, entering into a confined space be provided with an independent retrieval line or can more than one entrant be connected to a single retrieval line?”

OSHA’s Response:
OSHA’s response in the LOI states, “OSHA 1910.146(k)(3)(i) requires that each authorized entrant into a permit-required confined space must have a chest or full-body harness attached to their ‘individual’ retrieval line or life line to ensure immediate rescue of the entrant.”

Roco Note: It is important to note that “individual” retrieval line is not used in (k)(3)(i); it simply refers to “a” retrieval line. The standard states, “Each authorized entrant shall use a chest or full body harness, with a retrieval line attached at the center of the entrant’s back near shoulder level, above the entrant’s head, or at another point….”

Additional Roco Comments:
First of all, OSHA’s Permit-Required Confined Spaces Standard is, for the most part, a “performance-based” standard, meaning that it generally provides a result that is to be met, but leaves the manner by which that result is to be obtained to the judgment of the employer. This is particularly true of the rescue and retrieval requirements, as the specific circumstances and conditions of each entry or rescue will dictate what equipment and techniques may be required. However, this pending Letter of Interpretation (LOI) regarding the use of retrieval lines in Confined Spaces crosses over into the area of specific equipment and techniques that must be used.

Consistent with the performance-based nature of the standard, Roco has taught for years a technique that uses a single retrieval line for multiple entrants as an option to reduce line entanglement hazards during a rescue. The use of this technique was based on testimony given to OSHA prior to the Permit Required Confined Spaces Standard (29CFR 1910.146) being published, and indeed our interpretation of the intent of the standard. The particular technique in question is a common practice for rescuers in which one retrieval line is used and multiple entrant/rescuers are attached at different intervals with butterfly knots to reduce entanglement hazards during a rescue (see example below.)


This pending interpretation would put restraints on techniques used by rescuers when entanglement issues could be a problem. It would result in the management of multiple retrieval lines in the space which could affect the effectiveness of the rescue or result in an increased danger to the entrants and/or rescuers. In effect, this OSHA interpretation could cause an “all or nothing” response regarding the use of retrieval lines for rescuers and entrants. This LOI would eliminate the opportunity of using an external rescue technique for certain situations.

Paragraph (k)(3)  allows entrants to forgo using a retrieval line in certain situations –
“To facilitate non-entry rescue, retrieval systems or methods shall be used whenever an authorized entrant enters a permit space, unless the retrieval equipment would increase the overall risk of entry or would not contribute to the rescue of the entrant.”

The technique in question is an option that falls between each individual having an “individual” retrieval line, and having to opt out of using a retrieval line at all, and it allows for external retrieval to still be an option in many cases. And, as most of you know from personal experience, for most confined space portals only one individual can pass through at a time anyway. Even with multiple retrieval lines, it is still a “one at a time” event.  A shared retrieval line allows the same to take place.

It is Roco’s position that the rescue and retrieval techniques used in rescue should be performance based to allow for the ever-changing conditions and problems that are unique to rescue. We also feel this pending LOI could affect the safety and ability of rescuers to adjust to these situations. However, until this issue is clarified, Roco will not teach or use the technique of having multiple rescuers/entrants attached to the same retrieval line in consecutive order using midline knots as their attachment points.
read more 

How to Haul a Victim in Half the Time: Part 2

Tuesday, June 28, 2011

Well, maybe not half the time, but certainly some fraction of the time.

In How to Haul a Victim in Half the Time: Part 1, we covered ways to reduce the time needed to haul a rescue package by taking advantage of changes of direction.

Here, we want to address OSHA and ANSI guidance regarding retrieval systems – specifically mechanical devices used for rescue.

OSHA 1910.146(k)(3) states “To facilitate non-entry rescue, retrieval systems or methods shall be used whenever an authorized entrant enters a permit space, unless the retrieval equipment would increase the overall risk of entry or would not contribute to the rescue of the entrant.

Additionally, OSHA follows the ANSI Z117-1-1989 approach that was in effect at the time of OSHA 1910.146 promulgation, which states, “A mechanical device shall be available to retrieve personnel from vertical type PRCS’s greater than 5 feet in depth.” It also adds, “In general, mechanical lifting devices should have a mechanical advantage adequate to safely rescue personnel.”

Subsequent revisions to ANSI Z117 included the recommendation that “The mechanical device used should be appropriate for rescue service.” The revised standard adds,“Mechanical lifting devices should have a mechanical advantage of at least four to one and the capacity to lift entrants including any attached tools and equipment.”

Two key points that must be considered: (1) OSHA follows the ANSI approach that was in effect at the time 1910.146 was promulgated which did not recommend a minimum mechanical advantage ratio; and, (2) The rule makers intended to leave a degree of latitude for the rescue service to select a lifting device that is most appropriate for the particular situation encountered.

Roco’s rule of thumb is… the mechanical device used should be appropriate for rescue service – and the employer should not use any mechanical device that could injure the entrant during rescue, which would include a mechanical device with too great a mechanical advantage (MA) for the number of people operating the system. Here’s a guideline we use for determining the proper number of rescuers for a particular system – it should take some effort to haul the victim, but not so much effort that it wears the rescuers completely out. And, it should not be too easy, or you won’t as readily feel if the victim gets hung-up.

Because 1910.146 is a performance-based regulation, it does not specify the rescue procedures that are most appropriate for any given PRCS. It leaves this to the responding rescue service based on their assessment of the PRCS in terms of configuration, depth, and anticipated rescue load. Current ANSI Z117 recommends that the MA “should” be at least four to one. Notice that it does not state “shall” and thus the discretion of the rescue service is taken into account. A generic recommendation of a 4:1 is a good start but should not be considered as a catch-all answer to the problem of lifting the load. Even a 4:1 may not be enough if the person doing the hauling is not strong enough and may require a greater M/A in order to remove the load from the space.

Must we always use a minimum MA of 4:1, or could there be justification in using an MA below the 4:1 ratio when there is a need to provide a faster means of hauling the rescue package? Consider the possibility of reducing the mechanical advantage ratio when there is plenty of haul team members. If you have 4 haul team members for a 250 pound rescue package, do you really need that 4:1 MA? Consider going with a 3:1 or even a 2:1, especially if the throw is short and the haul is long. However, keep in mind that the package will be traveling much faster by reducing the MA – so it is imperative that a “hole
watch” be assigned to monitor the rescue package and be ready to call an immediate “STOP” should the package become hung up.

Caution: If you’re using a piggyback system, make sure the haul team does not outpace the individual taking in the mainline slack through a ratchet device. Should a lot of slack build up in the mainline and the haul team lose control of the haul line, the resulting free-fall of the load could spell disaster. Of course we always encourage the use of a safety (belay) line, but on rare occasions the urgency of the rescue may warrant not using a safety line on the victim.

Ultimately it is the employer’s responsibility to evaluate the selected rescue service’s ability to provide prompt and effective rescue. If the rescue service is able to demonstrate their capability using an MA that is less than the current ANSI recommendation, then that would meet the performance-based nature of the standard. In reality, by using a reduced MA, the time required to extricate the rescue package can be cut by 1/3 to 1/2 depending on the situation. In certain emergencies, that saved time could very easily mean the difference between a successful rescue and a body recovery.
read more 

Previous Next
1 2 3

RescueTalk (RocoRescue.com) has been created as a free resource for sharing insightful information, news, views and commentary for our students and others who are interested in technical rope rescue. Therefore, we make no representations as to accuracy, completeness, or suitability of any information and are not liable for any errors, omissions, or delays in this information or any losses, injuries, or damages arising from its display or use. All information is provided on an as-is basis. Users and readers are 100% responsible for their own actions in every situation. Information presented on this website in no way replaces proper training!