Roco Rescue

RescueTalk

WE DO RESCUE

Suspension Trauma Explained: Safety Poster from Roco

Monday, April 22, 2013

What exactly is suspension trauma? How does it occur? And what can be done to prevent it?

Suspension Trauma - otherwise known as harness pathology, distributive shock, or orthostatic intolerance - has recently been identified by OSHA as a workplace hazard particular to Authorized Workers using personal fall arrest systems (PFAS). More and more employers are becoming aware of this workplace hazard and are taking appropriate steps to protect their employees. The range of understanding on the cause of the hazard, as well as how to protect against it, is pretty vast.

Our new Suspension Trauma Safety Poster is a tool to raise awareness of this hazard. It illustrates the pathological path that a fallen suspended worker may experience. Please share with colleagues, fellow safety professionals and especially workers that use PFAS. It could save a life.

Just click to download a printable pdf.

The rate at which suspension trauma develops varies from individual to individual and is not reliably predictable. However, there are factors that influence the potential for suspension trauma as well as the speed of onset. Here are a few examples:
  • • Underlying physical condition of worker including any pre-existing respiratory or cardiac conditions;
  • • Worker’s ability to handle stress and anxiety;
  • • Harness selection, fit, and adjustment;
  • • Traumatic injuries that may have occurred during or before the fall; and,
  • • Knowledge and the use of equipment or techniques to delay the onset of suspension trauma such as temporary leg stirrups or simply “bicycling the legs.”

Roco also offers a course called Suspended Worker Rescue to educate rescuers who respond to suspended workers.  

Pathological Effects of a Fallen Worker in Danger of Suspension Trauma


For those of you who prefer a more detailed explanation, here's the narrative from Roco Chief Pat Furr. 

1. Leg Circulation: A fall arrest harness does a great job of dissipating the energies generated during a fall arrest through the long axis of the human body. After all motion has stopped, that same harness – particularly the dorsal attachment configuration – will most likely impose pressure to the femoral vein that is the primary blood vessel that returns blood from the legs towards the heart. In fact, in order to pass certification testing, these harnesses must not allow the test mannequin to assume greater than a 30 degree forward lean upon suspension. Any degree of forward lean will exert leg strap pressure on the femoral vein which impedes blood return. To compound this, the human body relies on what is known as the muscle/venous pump to assist the blood return from the legs to the heart. In suspension, the worker often forgets to bicycle their legs to create this muscle/venous pump. The trapped blood in the legs creates what is known as distributive shock as more and more blood is trapped in the legs; there is less to circulate for the rest of the body (brain, heart, lungs, and kidneys). Additionally this blood becomes highly acidic and toxic with metabolic wastes.

2. Heart Circulation: As the body goes into distributive shock, the heart must increase the rate and strength of its contractions to compensate. To compound this, the suspended worker may be experiencing a high degree of fear and anxiety, which releases adrenalin into the blood stream which also causes the heart to work harder and faster. This places increased demands on the heart, which is receiving less blood flow and thus less oxygen. The heart becomes irritable and is prone to localized tissue damage, dysrhythmias or both. This is especially a concern once the worker is rescued and the toxic blood is allowed to surge from the legs to the irritable heart. This is known as reflow syndrome and has caused several victims to go into sudden cardiac arrest upon rescue.

3. Brain Circulation: As the victim goes into distributive shock, or worst case, suffers cardiac arrest, the brain is deprived of adequate blood supply and this can lead to unconsciousness. If the victim faints the airway can be blocked by the head position or even by a poorly adjusted harness that allows the chest strap to block the airway. That is a difficult statement to write into a fatality report “Cause of Death: Strangulation by Victim’s Own PPE.”  If the victim’s heart stops, we can expect permanent brain damage or death in as little as four minutes.

So it should be obvious that a prompt rescue capability must be ensured by any employer that has Authorized Persons using PFAS. This can be accomplished in many ways. Roco has a variety of training courses that are specifically designed to provide that prompt rescue capability for fallen/suspended workers.

For more information please contact Roco Rescue at 800-647-7626 or submit a question to our Tech Panel.
read more 

Roco Rescue Accepts Distinguished OSHA VPP Star Award

Wednesday, April 17, 2013

Roco Rescue was officially awarded the OSHA VPP Star at a ceremony on April 15th, making them the first rescue training, equipment and safety services company in the United States to receive the award.

OSHA recognized Roco for their excellent safety history, practices and programs, which makes them a part of a distinguished community of approximately 2,400 other elite organizations in the nation who have met the rigorous guidelines for achieving VPP Star recognition.

Supporters gathered at the Roco Training Center in Baton Rouge to celebrate the rare designation. Senior VP/COO John Voinché introduced special guests and thanked them for their long-time support of Roco Rescue. An official OSHA plaque of honor was presented to Kay Goodwyn, President/CEO, before a VPP Star Worksite flag was raised at RTC by Chief Carroll Campbell and Denver Payne.


The Voluntary Protection Program (VPP) is based on a cooperative relationship between management, labor and government. VPP promotes worker protection, which requires active employee involvement and management commitment, while emphasizing the continual identification and elimination of hazards beyond OSHA standards.

 

“It's a commitment our people make at every level. Being in the business of safety and rescue services, it is essential that every Roco team member engage in the utmost safety at all times,”  Kay Goodwyn said.

“It takes a conscious effort on everyone’s part, and we are extremely honored to be a part of this elite group.”

 

Above: The VPP Star Worksite flag is raised for the first time.

Right: Goodwyn accepts OSHA plaque from Roderic Chube, VPP Coordinator of the Baton Rouge Area OSHA Office.  

read more 

Trench Training: A Careful Balance Between Realism and Safety

Tuesday, March 12, 2013

by Dennis O' Connell, Director of Training/Chief Instructor

This IPhone video captured at a recent training exercise is being posted here solely to illustrate the powerful nature of a trench collapse. Instructors were aware that a collapse was imminent and a “safe zone” was established along with other measures that will be discussed in this article. It’s important to note that all students were cleared from the area prior to releasing the struts for the collapse. This video is presented with the intention of helping trainers and rescuers achieve greater safety awareness during training events.



You’ve probably heard the saying “train as you play, and play as you train” many times. However, for rescuers, this training mentality is essential! Rescuers should have the ability to handle a wide variety of events, but must also appreciate the dangers of the job.

Realism is the key to effective training and prepares rescuers both physically and mentally. The more demanding and technical the rescue, the more important it is to simulate the appropriate skills as closely as possible. This realism during training will help rescuers understand what to expect during a real rescue.

This behavior needs to be practiced but must also be balanced with safety as the #1 priority. To avoid injuries, a risk analysis must be conducted and carefully reviewed. This will help in planning the training exercises and in determining possible hazards where students may be most at risk. Everyone involved in the training exercises (including observers) should be informed of the dangers as well as control measures and safety requirements. Everyone should be aware that they have the ability to stop an evolution immediately should a safety concern be detected.

In order for this to happen, an established rescue plan should be devised for each element of training. An example in high angle training would be an “instructor’s line.” A designated instructor/rescuer, an additional line, and equipment should be staged and ready for a rescue, just in case. Teaching stations should also be set up in close proximity to allow for the use of the equipment from one station to another.

In our quest for realism, we need to constantly re-evaluate as the training proceeds. Risk vs. reward…is this training exercise worth the risk?

Now, let’s take a look at some common techniques used to increase pressure for rescuers and evaluate performance during a “simulated” rescue. Time limits are often used to increase stress levels while performing skills. In rope rescue training, knot tying and patient packaging are good examples where time restraints are a useful tool. On the other hand, if you set time restraints or implement a “speed reward” for how fast you can rappel down a building or perform a rescue, it can lead to unsafe actions that can cause injury or even death.

Here’s a deadly example of speed rewards during training. There was a video of tree trimmers taking their final exam. In the video, they were required to climb a ladder into a tree, anchor themselves off and hook up to a rappel line, rappel down to a simulated victim, and then lower themselves to the ground. In the video, the student is being timed, while being offered a reward for speed. In the process of doing so, the student missed a connection, as did the instructor, and fell to his death.

Another interesting means of rescuer stress or pressure that can develop unexpectedly during training is “peer pressure.”

In the same tape, students can be heard encouraging, for lack of a better word, individuals to beat the clock. If used in the correct manner, this friendly competition can be useful, but if not exercised properly, it can be dangerous. Competitive training exercises should be used only within the design of the class. If it develops unexpectedly, it should be shut down. Otherwise, it can quickly create a dangerous learning environment.

Again, the instructor needs to keep the safety of the students in mind and evaluate all potential consequences.

Span of control is “the number of people one can effectively manage.” The more technical or hands on a training course is, the smaller the number of people a single instructor can safely control.

In rope training, techniques (and teaching) may occur at multiple levels on a structure. For example, pick-off techniques or patient packaging in a simulated confined space rescue exercise. Certain techniques may require additional instructors at various levels to monitor students “going over an edge” and at the “pick-off” level. Or, with a confined space scenario, it may require an additional instructor to be physically located in the space to make sure patient packaging connections are correct prior to raising or life-loading the line.

Sometimes with in-house training, personnel can become complacent with double-checking all systems or having that extra set of eyes from an uninvolved participant. That’s why it is so important that every training exercise is carefully planned and followed through in all areas. 

When training a group of your peers, it can often be difficult to prevent “freelancing” and to keep everyone on the same page. A well-planned training session will include a review of safety issues at the start – every time! The briefing should explain what will be covered (and allowed or not allowed) during the training. This will help students to understand that it’s more than just a “play” session, and will hopefully reduce the temptation for freelance activities.

It’s important for trainers and rescuers alike to watch this video. The training is being conducted in a live trench, which is definitely more realistic and more real world than setting trench panels between two containers.  It is also more dangerous! The instructor ratio, training, and skills must be competent for the task. Acceptable conditions must be re-evaluated constantly and discussed between instructors. In some cases, like this one, a dangerous condition can be presented when students remove trench panels and equipment. This is the time to stop a class and halt all operations. 

During this particular session, there was a large crack or separation in the dirt, which made the weight of the dirt unstable. As you will see, this caused the collapse of a large portion of the trench wall. In this particular situation, it was simply not worth trying to recover the trench panels at the cost of safety. The students were informed of the danger, how it was detected, and how it could be resolved.

Just remember… no piece of equipment or gear is worth injuring a student or instructor! 

After everyone was informed of the danger of an impending collapse, the decision was made to let the wall collapse and to video it as a learning tool for that class and future classes. This video will give you a very clear picture of the speed and force that can occur in a trench collapse.

As you can see, the proper precautions were taken during this exercise in order to demonstrate the incredible power of a trench collapse.

An emergency plan was developed. A safety officer designated areas of safety as well as areas of dangers for students, instructors and observers. In order to maintain the stability of the opposing trench wall, a decision was made to keep a couple of other trench panels in place. A backhoe was used to slope sections of the trench and create a “safe zone” for the instructor to remove the struts, which in turn let the wall collapse. The force of the dirt was so powerful that it snapped a ¾-inch shore form panel and a 2" x 12" strongback like a toothpick.

What you won’t get from the video is the sense of force or vibration that was felt when the trench wall collapsed. It’s something the students will take away from the training along with a much greater respect for the power of a trench wall collapse.

Again, we stress that constant re-evaluation of conditions during technical rescue training is critically important for the safety of all involved. Instructors must have the ability to perceive any differences in the training environment or situation, be able to identify unacceptable conditions, and to take quick, corrective action. Students should also have the ability to stop a training evolution if they perceive danger or have concerns. It’s always best to stop and re-check everything! 

Many times, it’s as simple as letting the students know if they see something that they think is dangerous or not quite right, or if they don’t quite understand, just yell, “STOP!”

Summary:

This video is a great learning tool that illustrates what can happen during “live trench” training. It dramatically demonstrates the speed and force of a trench wall collapse. However, it also affirms that with proper attention to the training environment and changing conditions, injury can be avoided.

It’s similar to personnel who have been exposed to swift water rescue in real world environments. They take away a much greater respect for the power of moving water, and it cannot be simulated in a swimming pool. Or, with high angle training, while it’s the same technique, rappelling from height versus a one-story building is a totally different experience.

As instructors, we must develop training that will give our students the experience and skills needed to perform their jobs safely. But we also need to keep them safe during training as well. Use this video and the story behind it to emphasize safety and proper planning during training sessions. It also helps us to realize that being a trainer or instructor comes with great responsibility. For me, it’s a constant battle between two thoughts: “No one should get injured during training,” versus “let no man’s ghost return to say his training let him down.”

The need to develop safety plans and perform risk analysis during training is an important part of our job as instructors, and student safety is our #1 priority.

read more 

Lanyard Safety

Tuesday, December 04, 2012

Here's a question from one of our readers: How can you test a lanyard to determine if it is safe to use? Is there a standard checklist or procedure?

Answer from the Roco Tech Panel: As with all safety and rescue gear, we recommend that you inspect, use and care for it in strict accordance with the manufacturer’s instructions. Of course, all equipment should be carefully inspected before and after each use. And, as we always say, “If there’s any doubt, throw it out!” Sometimes it’s less expensive to simply replace the gear versus going through any elaborate testing process. We did find the following information regarding lanyard inspections in an “OSHA Quick Takes” document. Thank you for your question!

Lanyard Inspection

To maintain their service life and high performance, all belts and harnesses should be inspected frequently. Visual inspection before each use should become routine, and also a routine inspection by a competent person. If any of the conditions listed below are found, the equipment should be replaced before being used.

When inspecting lanyards, begin at one end and work to the opposite end. Slowly rotate the lanyard so that the entire circumference is checked. Spliced ends require particular attention. Hardware should be examined under procedures detailed below.

HARDWARE
Snaps: Inspect closely for hook and eye distortion, cracks, corrosion, or pitted surfaces. The keeper or latch should seat into the nose without binding and should not be distorted or obstructed. The keeper spring should exert sufficient force to firmly close the keeper. Keeper rocks must provide the keeper from opening when the keeper closes.

Thimbles: The thimble (protective plastic sleeve) must be firmly seated in the eye of the splice, and the splice should have no loose or cut strands. The edges of the thimble should be free of sharp edges, distortion, or cracks.

LANYARDS
Steel Lanyard:
While rotating a steel lanyard, watch for cuts, frayed areas, or unusual wear patterns on the wire. The use of steel lanyards for fall protection without a shock-absorbing device is not recommended.

Web Lanyard: While bending webbing over a piece of pipe, observe each side of the webbed lanyard. This will reveal any cuts or breaks. Due to the limited elasticity of the web lanyard, fall protection without the use of a shock absorber is not recommended.

Rope Lanyard: Rotation of the rope lanyard while inspecting from end to end will bring to light any fuzzy, worn, broken or cut fibers. Weakened areas from extreme loads will appear as a noticeable change in original diameter. The rope diameter should be uniform throughout, following a short break-in period. When a rope lanyard is used for fall protection, a shock-absorbing system should be included.

Shock-Absorbing Packs
The outer portion of the shock-absorbing pack should be examined for burn holes and tears. Stitching on areas where the pack is sewn to the D-ring, belt or lanyard should be examined for loose strands, rips and deterioration.

VISUAL INDICATIONS OF DAMAGE

Heat
In excessive heat, nylon becomes brittle and has a shriveled brownish appearance. Fibers will break when flexed and should not be used above 180 degrees Fahrenheit.

Chemical
Change in color usually appears as a brownish smear or smudge. Transverse cracks appear when belt is bent over tight. This causes a loss of elasticity in the belt.

Ultraviolet Rays
Do not store webbing and rope lanyards in direct sunlight, because ultraviolet rays can reduce the strength of some material.

Molten Metal or Flame
Webbing and rope strands may be fused together by molten metal or flame. Watch for hard, shiny spots or a hard and brittle feel. Webbing will not support combustion, nylon will.

Paint and Solvents
Paint will penetrate and dry, restricting movements of fibers. Drying agents and solvents in some paints will appear as chemical damage.

CLEANING FOR SAFETY AND FUNCTION

Basic care for fall protection safety equipment will prolong and endure the life of the equipment and contribute toward the performance of its vital safety function. Proper storage and maintenance after use is as important as cleaning the equipment of dirt, corrosives or contaminants. The storage area should be clean, dry and free of exposure to fumes or corrosive elements.

Nylon and Polyester
Wipe off all surface dirt with a sponge dampened in plain water. Squeeze the sponge dry. Dip the sponge in a mild solution of water and commercial soap or detergent. Work up a thick lather with a vigorous back and forth motion. Then wipe the belt dry with a clean cloth. Hang freely to dry but away from excessive heat.

Drying
Harness, belts and other equipment should be dried thoroughly without exposure to heat, steam or long periods of sunlight.

For the complete OSHA Quick Takes document, click here.

read more 

Working Safer with JHA’s (Job Hazard Analyses)

Tuesday, August 14, 2012

By Roco Chief Instructor Pat Furr

A Job Hazard Analyses (JHA) is a very effective tool that most every employer should consider incorporating into their safety management program. This tool, otherwise known as a Job Safety Analyses (JSA) or Risk Assessment (RA) is a process that identifies workplace hazards, and then spells out means to eliminate, control, or provide protection to employees from the identified hazards. Once completed, the JHA can then be used as both a training tool and a pre-task safety checklist. There are a variety of formats that can be used to create an effective and logical JHA.

However, the JHA should become a living document that may require frequent updating as the work process, tools, work environment, safety legislation, and the workforce changes. Even if these factors do not change, the JHA should be reviewed periodically to ensure that it’s still current and still applicable to the job or task.


“The goal of the JHA is to identify workplace hazards and take corrective action BEFORE an incident occurs.”

The preparation of a JHA should be a collaborative effort between safety personnel and front line workers. It’s often the front-line worker who can provide valuable insight into the specific tasks involved as well as provide solutions to the most common hazards. Of course, it’s always vitally important to have a safety professional intimately involved with the process to ensure that input provided works hand-in-hand with established company policy and any legislated safety requirements. By involving front line workers, they will feel like they had valuable input to the process, which is very true by the way.

Whatever format that you choose, it’s important to develop your JHA in a logical, easy-to-use manner. Here are some guidelines:
1. Identify the hazards.

  • This may be obvious based on any history of accidents or near misses.
  • Interview front line workers to hear their concerns.
  • Evaluate the workplace to ensure it is in compliance with legislated and consensus safety standards.
  • Brainstorm with workers to dig deeper into the subtle or overlooked hazards. Break the work process down into individual steps or tasks to help uncover any obscure hazards.
2. Determine the consequences of exposure to the hazard and any contributing factors or triggers. It may be helpful to develop a ranking system based on a variety of factors.

  • Describe the likely outcome of exposure to the hazard.
  • Does the hazard have the potential to harm multiple employees?
  • How likely is the hazard to cause harm?
  • How quickly will exposure to the hazard cause harm?
  • Rank the hazards in terms of the most severe in order to determine which hazards must be given priority attention!
3. What protective measures are available to prevent the hazard from causing harm?

  • Can the hazard be eliminated?
  • Example: Eliminate fall hazards by bringing the work to the ground.
  • Can the hazard be controlled? Example: Install machine guards on rotating parts
  • Finally, if the hazard cannot be eliminated or controlled, what personal protective equipment (PPE) is required to protect the worker?
JHA’s can be very simple or very complex. The goal, however, is to find a balance between overburdening the worker with exhaustive paperwork and a document that is so lacking in detail that it is essentially useless. My experience is that the JHA should be just detailed enough to provide a succinct means to identify the hazards of the task, or the various steps of the task, predict the consequences of exposure to the hazard, and to provide a hierarchical means to protect the worker from the hazard. I like to keep the JHA simple and concise as it tends to encourage the worker to think into the situation and make – for lack of a better term- a “real time evaluation of the hazard.”

Remember, the JHA (JSA, RA) should be considered a living document that is updated to reflect any changes. It should also be an easy-to-use tool that workers and management can employ to identify hazards, rank the hazards in terms of their potential consequences, and provide an escalating hierarchy to abate the identified hazards. These documents should also be retained for a period of time because they may be useful in investigating any accidents after the fact.

Workers are injured every day on the job. JHA’s can be very useful for discovering, preventing or even eliminating some hazards from your workplace. At minimum, the process is likely to result in fewer injuries, more effective work methods, and increased worker productivity. What’s more, a simple, step-by-step JHA can be a valuable tool in training new workers to do their jobs more safely and effectively.
read more 

LAFD promotes Confined Space Awareness

Tuesday, June 26, 2012

“It is our experience that the victims, would-be rescuers, and co-workers either fail to adhere to their emergency plans or simply do not have a plan in place, with catastrophic results... In the last year alone, we have responded to three confined space rescues.”- Battalion Chief Jack Wise of the Los Angeles Fire Department

Joint Effort for Confined Space Awareness Education


The California Department of Industrial Relations' Division of Occupational Safety and Health (Cal/OSHA) joined forces March 28 with the Los Angeles Fire Department to urge employers and employees to prepare properly for working in confined spaces. Officials from both agencies participated in a news conference where LAFD personnel gave a confined space rescue demonstration and potential hazards were explained.

Cal/OSHA launched a statewide confined space education and awareness campaign in February after seven confined space deaths and numerous injuries in 2011. Illustrating the variety of industries where confined spaces are common, those deaths occurred at a Fortune 500 pharmaceutical facility, a winery, a paint manufacturing plant, and a recycling center.

“Today's event with the Los Angeles Fire Department helps raise awareness of the hazards associated with working in confined space environments and the need for employers to have an effective emergency response plan in place before a critical situation arises,” DIR Director Christine Baker said. “As a national leader in workplace safety, Cal/OSHA is working with labor, employers, and public safety officials to eliminate this type of preventable fatality in the workplace.”

Some of the 2011 fatalities involved potential rescuers attempting to aid someone who had collapsed in a confined space. “These confined space deaths and serious injuries were all preventable had safety practices been in place. It is even more tragic that, in many cases, workers attempting to rescue their co-workers also fall victim,” said Cal/OSHA Chief Ellen Widess. “Confined spaces can be deceptively dangerous. Employers need to assess if they have such a hazard, identify and mark those spaces, [and] provide employee and supervisor training and on-site rescue plans and equipment.”

Cal/OSHA has posted extensive information about confined space hazards on its website at http://ohsonline.com/articles/2012/03/30/la-fire-department-boosts-confined-space-awareness.aspx
read more 

Lock-Out / Tag-Out: What Rescuers Need to Know

Tuesday, April 24, 2012

"The concept of LOTO is a great one and it works. As rescuers, we have to take the common industrial application and expand it to ensure that the rescue scene is safe and that we are controlling hazards at the point of contact with the victim or in a space where something has gone very wrong," says Dennis O'Connell, Chief Instructor and Director of Training for Roco Rescue.

Although commonly referred to as the “Lock-out/Tag-out” (LOTO) standard, the actual title of 1910.147 is “The Control of Hazardous Energy.” This title probably better describes it's true purpose -- and there's no doubt that the understanding of this concept has saved many lives and prevented countless injuries.

The LOTO standard “covers the servicing and maintenance of machines and equipment in which the energizing or start-up of the machines or equipment, or release of stored energy, could harm employees.” It establishes OSHA’s minimum performance requirements for the control of such hazardous energy [Ref: 1910.147(a)(1)(i)].

The general concept of LOTO is that energy sources affecting the area in which servicing or maintenance is occurring are identified and locked in the “Off” position, or in the case of mechanical hazards, linkages are disconnected for the duration of the work. Some type of lock or device is placed on the equipment by those performing the work.

However, we’ve found that if you ask different people to define LOTO, you will get a variety of answers. Not only will you get different definitions, you’ll also get varying information as to how and when LOTO is to be used and who is actually allowed to place locks or controls during the LOTO process. OSHA CFR 1910.147(b) has a very narrow and specific definition of who can perform lock-out or tag-out operations. That definition does not include rescuers; and, actually, there is good reason for that.

If you ask emergency responders about LOTO, you’ll generally find that their definition has been expanded well past the “control of hazardous energy” to cover most rescue operations. This expanded safety mindset serves to protect both the rescuer(s) and the victim(s) from additional harm following an incident. Rescuers usually define LOTO as “making the scene safe; or controlling and keeping machinery from moving or shifting during a rescue.”

Unlike standard LOTO, which is usually a systems’ approach, rescuers are generally trying to control the environment near an entrapped victim. As rescuers, we often act outside the parameters of a LOTO procedure that may already be in place. Because rescuers would best be defined under “affected employees” in a rescue where a LOTO procedure is in place, we need to understand what OSHA CFR 1910.147(b) says about “authorized employees” and “affected employees.”

Authorized employee. A person who locks out or tags out machines or equipment in order to perform servicing or maintenance on that machine or equipment. An affected employee becomes an authorized employee when that employee's duties include performing servicing or maintenance covered under this section.

Caveman translation: A person that the employer says has the systems or mechanical knowledge and authority to safely lockout/tagout a machine or space.

Affected employee. An employee whose job requires him/her to operate or use a machine or equipment on which servicing or maintenance is being performed under lock-out or tag-out, or whose job requires him/her to work in an area in which such servicing or maintenance is being performed.

Caveman translation: I have to work in an area where LOTO is in place.

A nice definition can be found in 54FR36665 in the promulgation of the Control of Hazardous Energy Standard...

“...an ‘affected employee’ is one who does not perform the servicing... but whose responsibilities are performed in an area in which the energy control procedure is implemented and servicing operations are performed under that procedure. The affected employee does not need to know how to perform lock-out or tag-out, nor does that employee need to be trained in the detailed implementation of the energy control procedure. Rather, the affected employee need only be able to recognize when the energy control procedure is being implemented, to identify the locks or tags being used, and to understand the purpose of the procedure and the importance of not attempting to start up or use the equipment, which has been locked out or tagged out.”

There is good reason for these prohibitions. Improperly performed LOTO can be just as dangerous, if not more so, than no LOTO at all. Allowing LOTO to be performed by personnel who are not familiar with the processes and equipment to be locked out increases the chances of improper lock-out. The requirement that only employees actually performing the servicing and maintenance of equipment are allowed to lock out equipment is less of a concern for rescuers than may first appear – and here’s why.

Typically, the person being rescued from a space that has hazardous energy sources is someone who has already performed LOTO. If that person performed LOTO properly and the reason for the rescue is something other than exposure to a hazardous energy source, the rescuers are not exposed because the victim obviously cannot remove his lock while he is being rescued. If the victim performed the LOTO improperly and the rescuers discover the error, the rescuers can then lock-out the equipment as they see fit or as the rescue needs dictate without violating the standard because they are not locking out the equipment as part of the LOTO program. They are locking the equipment out as part of making the area safe for rescue operations.

The Consequences: Worker's Amputation in Turkey Shackle Leads to $318,000 Proposed Fine


OSHA initiated an inspection after the July 20, 2011, incident, in which the employee’s arm allegedly became caught in an energized turkey shackle line while the employee was working alone in a confined space.

 Jan 24, 2012 - OSHA cited the company for 11 safety violations at its Wisconsin facility after a worker’s arm was amputated below the shoulder while the individual was conducting cleaning activities in a confined space. Proposed fines total $318,000. “The company has a legal responsibility to follow established permit-required confined space regulations to ensure that its employees are properly protected from known workplace hazards,” said Mark Hysell, director of OSHA’s Eau Claire Area Office.

  “Failing to ensure protection through appropriate training and adherence to OSHA regulations led to a worker losing an arm.”

OSHA initiated an inspection after the July 20, 2011, incident, in which the employee’s arm allegedly became caught in an energized turkey shackle line while the employee was working alone in a confined space. Afterward, the employee had to walk down a flight of 25 stairs and 200 feet across the production floor to get the attention of a co-worker for assistance.

Four willful violations involve not following OSHA’s permit-required confined space regulations in the carbon dioxide tunnel room, including failing to ensure that workers isolated the carbon dioxide gas supply line and locked out power to the shackle line prior to entering the room to conduct cleaning activities, verify that electro-mechanical and atmospheric hazards within the room were eliminated prior to workers entering the space, test atmospheric conditions prior to allowing entry, and provide an attendant during entries to the room.

Seven serious violations involve failing to provide fall protection, provide rescue and emergency services equipment, develop procedures to summon rescue and emergency

services, provide confined space entry procedures, prepare entry permits for the confined space, train employees and supervisors in entry permit procedures, and ensure that the entry supervisor performed required duties. This spells T-R-O-U-B-L-E.

Another Six-Figure OSHA Fine for LOTO Death

 Dec 14, 2011 - OSHA announced it has cited a Missouri recycling facility for 37 safety and health violations following an inspection opened after a worker died from injuries sustained June 12 when he entered a baling machine to clear a jam and the machine became energized. Proposed fines total $195,930.

 Twenty-two serious safety violations have been filed, including failing to lock out and tag out the energy sources of equipment and install adequate machine guarding; fall protection; exits; flammable liquids; fire extinguishers; powered industrial trucks; and welding and electrical equipment. Eight serious health violations were cited, as was a one repeat safety violation relating to defective powered industrial trucks that were not taken out of service. The company was cited in April 2010 for a similar violation, according to OSHA.

As rescuers we need to be aware that the LOTO standard applies to general industry operations and DOES NOT apply to the following:


  •     Construction;
  •     Agriculture;
  •     Shipyards;
  •     Marine Terminals;
  •     Long shoring;
  •     Installations under the exclusive control of electric utilities for the purpose of power generation, transmission and distribution, including related equipment for communication or metering;
  •     Oil and gas well drilling and servicing;
  •     Exposure to electrical hazards from work on, near, or with conductors or equipment in electric-utilization installations, which is covered by subpart S of the general industry standards;
  •     Hot tap operations;
  •     Continuity of service is essential;
  •     Shutdown of system is impractical.
For some of the above operations, applicable regulations provide for procedures specific to the industry which, if followed, should provide proven effective protection for employees. However, rescuers need to be aware that activities in these areas not covered by OSHA’s LOTO standard could have uncontrolled energy sources. As we often say, “if everything had been done properly, we probably wouldn’t be responding as rescuers.”

In accordance with OSHA regulations, a LOTO program is a documented plan for safe work practices when dealing with energy sources. Prior to work commencing, potential sources of hazardous energy must be identified and controlled. Under certain circumstances where energy sources cannot be “locked out,” warning tags may be used. As responders, we do not have the luxury of studying blueprints and schematics to identify how to isolate the hazard. In fact, we’re most often responding to incidents that had a LOTO system in place that turned out to be ineffective or improperly used.

Rescue Scenario Examples


Rescuers were called to an incident in which a worker was trapped inside a confined space (a taffy mixing machine) that was supposed to be locked out. The machine suddenly activated; however, and the worker was seriously injured by the mixing blades. Employees on scene who initially locked out the equipment could not figure out where they erred – and they didn’t know how to prevent it from reoccurring as rescuers prepared to enter the space.

Not wanting to become victims themselves, the rescuers quickly considered several options to make the vessel safe for entry. They considered tying the blades so they couldn’t move, or wedging the blades against the side walls of the vessel, or disconnecting the motor. Because the patient was bleeding profusely, time was critical and all of these options would have taken too long. The rescuers ultimately opted to kill the power to the entire building, making the space safe for rescuers to enter. Fortunately, it was an option in this case. It may not have been an option where doing so would require shutting down an entire operating unit in a refinery or other industrial facility.

Another Incident during a Roco CSRT Stand-by


Another case of LOTO “gone bad” occurred during a Roco CSRT stand-by job at a local industrial plant. After LOTO had supposedly been performed, one of our team members happened to push the “Start” button as a test on a hyper bar in a tank – it turned “On!” Further investigation revealed that electrical work had been done in the area and the fuse lock-out was moved to another box adjacent to its original location. No one had notified the workers or changed the written protocol. Workers were locking out the wrong circuit! Had this been a rescue, how would rescuers control the hazard without knowing where the problem was with the LOTO?

Often overlooked, but another huge consideration for rescuers, is stored energy. OSHA identifies these hazards and provides a pretty good list of examples to be aware of when responding. It includes stored or residual energy in capacitors, springs, elevated machine members, rotating flywheels, hydraulic systems, and air, gas, steam, or water pressure, etc. Rescuers need equipment and techniques to control, restrain, dissipate, and immobilize these hazards. We also need the skills to manually isolate the area where the victim is located.

For general work operations, referring to LOTO as the placing of locks or tags or the removal of key controls may be sufficient. However, for rescuers, this alone may not provide adequate protection if those controls do not work or were never used.

From a rescuer’s viewpoint, our definition and options for effective LOTO needs to include other equipment and techniques that provide a safe area for rescue operations and to prevent further harm to the victim. This includes equipment that is used every day in the municipal rescue world that may not typically be found in an industrial facility. This includes equipment such as hydraulic spreaders and high pressure air bags. Even simple tools, such as metal wedges, can be used to isolate and protect the hand or arm of a victim trapped in a piece of machinery. The key is to determine your current capabilities and to identify what you may need prior to an incident occurring.

Municipal and industrial rescuers get called to a wide variety of rescues – each with its own unique problems and solutions. As we all know, the number of ways people can get themselves in harm’s way is unlimited! In all entrapment incidents, however, it is essential that we protect both the victim and ourselves from further injury and limit our exposure to the hazards that are present. In every incident, rescuers must first identify the hazards and try to eliminate or control them in every way possible.

Many times, as rescuers, we find ourselves using rudimentary “lock out” techniques. For example, when responding to stuck, occupied elevators in New York, we would access the control room, pull the power disconnect and use our handcuffs to lock it in the disconnect position. This was to prevent someone from turning the power back on while we were working in the shaft to free the victims from the elevator.

On more serious elevator rescues where the cables were slack, additional lock-out was achieved by using rated rescue rope/chains or cables to secure the elevator car so that it could not move up or down. Even during auto extrications, we would disconnect the battery to reduce the chances of an airbag deploying as well as not positioning ourselves between a rigid surface and an airbag.

Machine entrapment rescues are another all too common situation in which responders need to isolate the area at the point of contact with the patient to prevent further movement. In some cases, we have used wood or metal wedges to prevent further crushing, or chains, hydraulic tools, or cables to lock the machinery in place. And, rescuers beware... sometimes what sounds like a simple solution – such as turning off a machine – can do more harm if the machine normally recycles before coming to a resting position.

In Conclusion


From these examples, you can see that rescuers need to look deeper into their toolbox of techniques for creative options to isolate energy sources in order to protect themselves as well as the victim. And, this doesn’t just apply to municipal rescuers either. Industrial rescue teams are very likely to be called when an emergency like this occurs within your facility. In order to be proactive and prepared, take the time in advance to evaluate your response capabilities as well as that of local responders in your immediate area. Every minute is critical for that person trapped or injured.
read more 

Trench Rescue…A thinking game

Monday, December 12, 2011

Roco Chief Instructor Randy Miller explains that trench collapse injuries and/or death is way too common in civil construction, and industrial maintenance projects. The sluggish economy entices organizations to cut corners, after all – time is money. This trend also extends to the homeowner and weekend warrior. Rather than hiring a certified/trained “trench” professional , do-it- yourself or do-it-with-the-resources on-hand seems the more practical. This breeds disaster.

Miller explains, “REMEMBER: It’s not IF it’s going to collapse again, but WHEN it’s going to collapse again.”

Watch this new video on the importance of Trench Rescue Training, where Miller describes hazards of trench work, and offers 5 tips for safer trench rescue practices.

Five helpful tips for Trench rescue:

1. Personal accountability – Know where all your rescuers are at all times.

2. Keep the area clear – Often the first reaction in a trench collapse is to look, which adds more weight on the sides of the trench, increasing the likelihood of collapse.

3. Work from a safe area – Spread out the weight around the trench (e.g. laying wood down around the trench before stepping near or around it).

4. The best trench rescue is a “non-entry” rescue – If possible, get the trapped victim to begin digging himself out by giving him the right tools, right away. This gives the victim something to focus on while first responders develop an action plan.

5. Donʼt get in over your head – If you are not trained, wait. Donʼt create more victims.

Miller urges all first responders (EMS, fire department, police department, and industrial rescue teams) to receive at minimum an Awareness level of training in Trench Rescue.  First line supervisors are encouraged to advance to the Technician level training.

Roco offers a 20-hour Trench Rescue Technician training course. 
read more 

Trench Warning from OSHA

Monday, October 10, 2011

Two workers are killed every month in trench collapses. Unprotected trenches are among the deadliest hazards in the construction industry and the loss of life is devastating.Since 2003, more than 200 workers have died in trench cave-ins and hundreds more have been seriously injured. OSHA has three new guidance products to educate employers and workers about the hazards in trenching operations.

The new products include a fact sheet, QuickCard and a poster that warns, “An Unprotected Trench is an Early Grave.”

The three documents may be ordered in English- and Spanish-language versions from the Publications page of OSHA’s web site. See the news release for more information.
read more 

Has emergency response improved since 9/11?

Monday, September 26, 2011

We recently read an article from the NFPA Journal about the improvements that have been made since 9/11. Out of this tragedy came some very hard lessons learned – from an emergency response standpoint as well as national security and building codes, especially for high-rise structures. Are we better prepared? Is your department better equipped today for acts of terrorism or natural disaster? Has communications improved among responding agencies? Are you better trained as an emergency responder? An article in the September/October 2011 issue of the NFPA Journal cites three main areas that have improved as a direct result of the 9/11 terrorist attacks.

These improvements include: (1) interoperability for emergency responders; (2) high-rise building safety; and, (3) emergency preparedness. Staff Writer Fred Durso Jr. cites several NFPA standards developed or enhanced based on the lessons learned from the response, such as the need for an “all-hazards” approach. For example, NFPA 1981, a standard about SCBAs for emergency services, now requires these respiratory products to protect against chemical, biological, radiological, and nuclear (CBRN) agents.

NFPA 1851, a standard about protective ensembles for structural and proximity firefighting, now covers cleaning and decontamination of the PPE, and NFPA 1561, Emergency Services Incident Management System, requires using “clear text” terminology during an incident instead of radio codes.

He cites several NFPA standards developed or enhanced based on the lessons learned from the response, such as the need for an all-hazards approach. For example, NFPA 1981, a standard about SCBAs for emergency services, now requires these respiratory products to protect against chemical, biological, radiological, and nuclear (CBRN) agents. NFPA 1851, a standard about protective ensembles for structural and proximity firefighting, now covers cleaning and decontamination of the PPE, and NFPA 1561, Emergency Services Incident Management System, requires using “clear text” terminology during an incident instead of radio codes, Durso writes.

NFPA’s High-Rise Building Safety Advisory Committee, formed in 2004, developed proposals for NFPA’s Fire Code, Life Safety Code, and Building Construction and Safety Code to implement recommendations from the NIST investigations (published in 2005 and 2008) into why three of the World Trade Center buildings collapsed after the 9/11 attacks. One change in NFPA 5000, the Building Construction and Safety Code, specifies wider exit stairs when a cumulative occupant load of 2,000 or more people is expected to use them, he writes.

NFPA 1600, the standard for disaster/emergency management and business continuity, has been available free since 2005; the 2010 edition is now available (click here to download). NFPA is developing a program to train people who are charged with auditing private-sector programs that use the 1600 standard, according to the article.

The National Fire Protection Association and the International Code Council, whose model building and fire codes are the blueprint for most U.S. communities, followed most of the 9/11 investigators’ recommendations. They made significant changes in the 2009 and the upcoming 2012 codes, which apply to new high-rise buildings.

The national code improvements include glow-in-the-dark exit markings in stairways; a third or fourth stairway depending on the building’s height; greater separation between those stairways to lessen the chance of a single calamity disabling all of them; stickier, more robust fire-proofing, with inspections to ensure its proper application; backup water supplies for sprinklers; impact-resistant walls around elevator and stairwell shafts; fortified elevators that firefighters and, in some cases, occupants can use in an emergency; stricter and more consistent fire-resistance standards for skyscrapers’ structural components; radio amplifiers that help rescuers better communicate inside buildings; and improved emergency evacuation plans and disaster drills.

 


Illustration by William Neff, John Mangels.

Referring to the image above:

a) More, better sprinklers - must cover all floors, with backup water supply in case the primary system fails.

b) Tougher windows – panels laminated with clear, adhesive film or backed up with Kevlar curtains to prevent flying shards in case of explosion.

c) Spread-out utilities – piping and mechanical equipment for water, electric power, telephone, and air conditioning ducts to be put in separate locations so a single explosion doesn’t take out all systems at once.

d) Structural improvements – to lessen the risk of progressive collapse, additional support columns for redundancy; diagonal bracing to transfer loads if a column fails; improved fireproofing materials; no open web bar trusses, which collapse easily in a fire.

e) Non-obvious obstacles - rather than ugly walls and Jersey barriers, designers employ mix of planters, decorative fencing and benches, to deter car bombers.

f) Added distance – building is set back at least 50-10o feet from street, to blunt blast impact.

g) Access control – building entrances equipped with fingerprint or retina scanners, facial recognition cameras, card readers, metal detectors, explosives sniffers and other screening devices.

h) Blast protection – lower level support columns encased in concrete; exterior walls reinforced with steel plates and backed with Kevlar fabric to absorb explosion energy from a car or truck bomb.

g) Protected Deliveries – mail room and loading docks – where bombs may enter – should be hardened and isolated from critical building systems.

h) Ventilation protection – air-intake shafts should be at least 20 feet above ground level to reduce chances of noxious gases getting inside.

i) Stairwell improvements – minimum of 3 per floor, separated by at least 30 feet; branching at lower floors to allow multiple exits from building; should have fire and impact resistant concrete walls; high-flow ventilation to remove smoke; battery powered emergency lights and loud speakers; luminous paint guide strips and signs in case of power failure; extra wide 66- inch stairs to accommodate evacuees and rescuers.

j) Shielded elevator - building lifts should be shielded from impact with fire resistant shafts and fitted with waterproof electronics, so they can be used to evacuate occupants in fire or blast emergencies.

k) Reliable communication - internal antennas will allow fire and police radios to work throughout the building.

As the fire service began to rebuild and recover from 9/11, departments large and small across the country evaluated their level of preparedness and found it lacking according to an article by Bob Vaccaro,who has more than 30 years of fire-service experience. A key factor in enhancing preparedness was increased funding from DHS and grants from the AFG and SAFER programs.

Thanks to this funding, many municipalities have been able to upgrade apparatus, radio communications and personal protective equipment. We’ve seen decon units and WMD trailers with caches of equipment purchased and stored in various areas of the country. Post-9/11 funding also helped some poorer areas purchase much-needed apparatus. For some departments, it was their first new apparatus in many years; for others, it was their first-ever new rig.

Radio communications and wireless communications have improved vastly since 9/11. Many large cities and counties have purchased command vehicles and have learned and practiced the incident command system. Although we’ve by no means solved the problem of all agencies being able to talk to one another, significant advances have been made.

References:
Occupational Health & Safety
Cleveland.com
Fire Fighter Nation
read more 

Previous Next
.. 2 3 4 5 6 .. 8

RescueTalk (RocoRescue.com) has been created as a free resource for sharing insightful information, news, views and commentary for our students and others who are interested in technical rope rescue. Therefore, we make no representations as to accuracy, completeness, or suitability of any information and are not liable for any errors, omissions, or delays in this information or any losses, injuries, or damages arising from its display or use. All information is provided on an as-is basis. Users and readers are 100% responsible for their own actions in every situation. Information presented on this website in no way replaces proper training!