Roco Rescue

RescueTalk

WE DO RESCUE

New World of Worker Safety: DOL & DOJ Reach Agreement

Monday, February 22, 2016

Source: Safety+Health Magazine February 2016

Washington – A recent agreement between the Departments of Labor and Justice will launch a “new world of worker safety” by holding managers and supervisors criminally accountable for violations of the law, agency officials announced Dec. 17.

The two departments signed a memorandum of understanding that pools their resources toward the prosecution of individuals who willfully disregard labor and environmental statutes, according to John Cruden, assistant attorney general for the DOJ’s Environment and Natural Resources Division, who spoke at a press conference moments after the memo was signed.

For the past several years, OSHA and DOJ have worked with each other on certain cases, but the new agreement formalizes that relationship.

This cooperation could lead to hefty fines and prison terms for employers and individuals convicted of violating a number of related laws. For example, a roofing contractor recently pleaded guilty to violating an OSHA law, lying to inspectors and attempting to cover up his crime; he could be sentenced up to 25 years in prison.

“Strong criminal sanctions are a powerful tool to ensure employers comply with the law and protect the lives, limbs and lungs of our nation’s workers,” OSHA administrator David Michaels told reporters at the press conference.

Deborah Harris, DOJ’s Environmental Crimes Section chief, said prosecutions would be open to “the ones making the decisions that lead to the deaths of others,” which could include people in the corporate office, as well as managers and supervisors.

read more 

Atmospheric Monitors May NOT Detect All Dangers

Tuesday, February 09, 2016

By Dennis O’Connell, Roco Director of Training with contributing author Spencer Pizzani of Weston Solutions

Readings are 20.9/0/0/0…so it must be safe for entry, right? Not necessarily! 

After completing an interesting confined space standby job for Roco, I wanted to caution rescuers about the possibilities of atmospheric hazards within a confined space – despite what the atmospheric monitor says!

For this particular job, the atmosphere in the workspace never varied on the 4-gas monitor readings. The readings were consistently 20.9% for O2; 0 for LEL; 0 for H2S; and 0 for CO. However, this entry required the use of air-purifying respirators even though there were no visible signs of anything unusual – no odor, no product warning signs, no indication that there may be an inhalation hazard in the space.

This particular space was located at a public water facility. It was a 70-ft. deep concrete metering pit with six consecutive 12-ft x10-ft levels. It had concrete floors and walls with a vertical ladder that accessed each level. Although the space was not designed to store any product, in this case, we still had an atmospheric hazard.

The purpose of the entry was for remediation of mercury contamination on the concrete surface. The gross cleanup of liquid mercury had been performed years prior, but further action was required to eliminate vapor hazards still present in the lower chambers.

During the first phases of the entry, vapor levels that exceeded 40,000 ng/m3 (nano-grams per cubic meter) were detected. The more frequently updated ACGIH Threshold Limit Value is only 25,000 ng/m3. The work environment in this space routinely approached twice this level, even though there were no visible signs of liquid mercury. The source of the toxic atmospheric hazard was invisible and odorless – mercury vaporizing from the concrete surfaces.

Mercury is only one example of a toxicant that can produce a hazardous atmosphere in confined spaces that will not be indicated on a typical 4-gas meter or atmospheric monitor. Many rescuers assume that their 4-gas meter will detect all atmospheric conditions that may present a risk to their health or safety, but this is just not true. There are a wide variety of agents or toxicants besides mercury that will not be detected and whose presence may require other controls or the use of respiratory protection. This mistake could be deadly, or leave rescuers with chronic health issues.

In this scenario, for example, if you were an off-site rescuer responding to the above described space in an emergency situation. Without someone on site to inform you of the possible hazard, you would have no indication that any hazards were present. Many times as municipal rescuers we respond to, shall we say, shady locations where unauthorized storage or illegal dumping of hazardous products has taken place; there are no SDS, placards, or signage. Personnel on scene may not know, or may not want to relay vital information about a space of any products within the space.

Rescuers Beware: It's important to play the role of “detective” when planning or preparing to make a confined space entry.

Oftentimes, there are placards or signs on tanks or storage containers to start the investigation into what hazards may be present – and SDS for additional information. However, as rescuers we often fall into a state of “false security” with our 4-gas meter readings.

While much of our training may include “Go/No Go” scenarios for rescue teams, the use of respiratory protection is usually based on one of the “Big 4” readings on our atmospheric monitors. Unfortunately, this may only serve to reinforce the notion that a 4-gas monitor will always provide the “complete” information of what may be going on inside a confined space. We get dependent on these monitors to tell us if it’s safe to enter without respiratory protection – and there may be much more to the story!

OSHA’s Respiratory Standard [1910.134 (d)(1)(III)] specifies "Where the employer cannot identify or reasonably estimate the employee exposure, the employer shall consider the atmosphere to be IDLH.” 

In the above statement, if you substitute Team Leader for “employer” and “Rescue Team” for employee, you may find that you cannot “identify or reasonably estimate the employee exposure.” Therefore, rescuers would need to use SCBA/SAR and other PPE until you can completely identify what hazards are in the space even though typical monitoring devices are telling us that all is well.

While your standard 4-gas meter is an important screening tool – it is NOT a "catch all" for every atmospheric hazard.

Remember that NIOSH statistics indicate that 40%-60% of confined space entry fatalities are (would-be) rescuers, including both dedicated on-site standby teams and off-site professional rescuers (municipalities) who attempt to perform a confined space rescues.

But let’s take this a step further. If you ask most rescuers at what O2 level does an atmosphere become dangerous, they will say below 19.5%. I know from my initial hazmat/confined space training on 4-gas monitors included oxygen displacement. It was so elegantly described to me as “if your monitor shows a decrease in oxygen, it is telling you that something else has pushed out that percentage of oxygen and replaced it with some other agent.” Now, it would be up to you to figure out what else is in the air.

For example, normal breathing air is 20.9%. To get a reading of 19.5% means that about 1.4% of “something else” has displaced the oxygen. Then, depending on what that “something else” is, could require the use of respiratory protection. Hey, wait, the good news keeps coming, and I am getting in way over my head on this science stuff, but my high school chemistry teacher should still be proud. Ambient air is made up of about 79% nitrogen and other gases and 21% oxygen. So, using fingers and toes mathematics, that equals about a 4:1 ratio of nitrogen to oxygen.

In other words, if we have a 1% displacement of oxygen from the breathing air, it will be accompanied by about a 4% displacement of nitrogen (both gases displace at about the same rate). Therefore, instead of it being about a 1.4% percent of an unknown product in our breathing air, it could be as much as 5.6% or more! And, depending on what that product is, it could already be at its IDLH level.


Project Scientist Spencer Pizzani of Weston Solutions provides this insight.

"While many rescuers are habituated to only watch oxygen (O2) percent composition, this can be deceptive. The OSHA standard for O2 concentration is based on standard temperatures and pressures at sea level. When an environment presents lower pressure (such as at higher altitudes or in chambers subject to continuous air evacuation), the partial pressure of O2 is decreased as described by the Ideal Gas Law. This can lead to 'normal’ concentrations, but with less oxygen available for respiration.

A widely used example demonstrates that the partial pressure of oxygen in a confined space at high altitudes such as in mountainous areas would be the equivalent partial pressure of 14-15% oxygen at sea level. This can be low enough for the leading effects of asphyxiation to manifest – a problem exacerbated by the high oxygen demand of strenuous rescue work.

Gases that displace oxygen can have a similar effect. A typical 4-gas meter will only read oxygen concentration. This neglects the largest component of ambient air – nitrogen. The portion of air normally occupied by nitrogen is also replaced by another gas. When taken as a whole, the contaminant gasses may exceed levels and require the use of respiratory protection, with no indication from the typical 4-gas meter. Many toxic gases are odorless and colorless. Radiation can be a similar risk. While some types of radiation can be filtered or excluded with the use of respiratory protection, exposure to other types are simply a function of time, distance and shielding. Rescuers entering confined spaces may have a strict time limit for operations as established by a health physicist. In such cases, a 4-gas meter would be entirely unresponsive even in the presence of an instantly lethal radiation exposure vector.”

Pizzani advises,

“Rescuers responding to an emergency always need to look at the big picture and be part detective in identifying potential hazards that may impact both initial and rescue entry. Identification of past residues in storage containers, examination of process system SDS, and any information/knowledge provided by workers familiar with the space or process is invaluable. Warning signs such as odors, visible dust, or any variability on oxygen concentration should be met with a thorough set of instrument diagnostics and further investigation.”

Summary

A standard 4-gas meter is an important screening tool for atmospheric acceptability. However, it is "not a catch all" for every atmospheric hazard. Developing a detailed preplan; identifying possible hazards; and proper PPE should be the top priority of anyone planning a rescue entry. The use of supplied air systems (SAR/SCBA) should be considered “minimum protection” for rescuers until an atmosphere is completely characterized or in the event of an unknown agent or condition. Remember, a standard 4-gas meter may not be telling the whole story.

Special thanks to contributing author, Spencer Pizzani, who is an Industrial Hygienist and Project Scientist for Weston Solutions, Inc. Weston is a global environmental consulting firm specializing in environmental solutions, specialty construction and green development.

read more 

Service Life Guidelines for Rescue Equipment

Wednesday, January 20, 2016
Regardless of the stated service life, the condition of equipment–as determined through inspection by a qualified party – is a key factor in determining whether or not a piece of equipment is fit for service.

THIS INSPECTION PROCESS OFFERS GUIDELINES FOR KEEPING EQUIPMENT IN SERVICE OR RETIRING IT.

Depending on the manufacturer, you will find varying specifications for service life of rescue equipment. For example, Petzl specifically defines the “potential” service life of plastic or textile products to be no longer than 10 years. It states indefinite for metallic products. CMC, on the other hand, does not give specified times for their equipment stating, “The service life of equipment used for rescue depends greatly on the type of use and the environment of use. Because these factors vary greatly, a precise service life of the equipment cannot be provided.” However, in reference to harnesses, CMC’s cites ASTM F1740-96 as the industry standard for service life. SMC follows along the lines of CMC when stating the amount of time a product can stay in service.

Although the definition of “equipment lifespan” is very broad depending on the manufacturer, each will provide specific instructions on proper inspection of equipment and detailed explanations on when to the retire service item.

Most manufacturers follow the same general guidelines for removing equipment from service. Several general identifiers that pertain to all equipment are shown below. 

Download Roco's Quick Checklist for your convenience. →

REASONS FOR EQUIPMENT RETIREMENT INCLUDE:

  •   Item fails to pass any pre/post use or competent person inspection.
  •   Item has been subjected to a major fall or load.
  •   Item is constructed of plastic or textile material and is older than 10 years.
  •   You cannot determine the complete full-use history of item.
  •   You are not certain or have lost confidence in the equipment.

Most manufacturers will provide service for equipment items that are repairable. However, most caution against this because the cost of repair typically exceeds the cost of replacement. Any repairs attempted outside of the manufacturer may void any warranty and will release the manufacturer from any liability or responsibility. In addition, all manufacturers recommend destroying equipment once it has been retired from service to prevent items from inadvertently being recycled back into active service gear.

Manufacturers also provide indicators for different types of equipment that require it to be retired from service. These are not only capturing the general conditions mentioned above, but also bring in conditions that are specific to each category of equipment. It is important to identify these specific conditions as they are vital to the dependability and functionality of each component.

Harnesses:

Harnesses are one of the most vital components of life safety equipment. Without a certified harness in serviceable condition, the best life safety rope and hardware in pristine condition will do little to protect the user. All individuals who are required to wear harnesses to perform duties should be trained and authorized in the inspection process. Harnesses should be inspected before and after use as well as once annually by an individual deemed a competent person by the facility or department.

Since harnesses are a nylon product, they fall under the guidelines set forth by ASTM consensus standard F1740-96 and have a service life of 10 years. Manufacturers also state that hard or excessive use – as well as the conditions when a harness is used – may significantly reduce its service life. It is important to conduct routine inspections as well as keep records of harness use. This “usage” history could indicate signs that would require the equipment to be retired early.

Here are some conditions to help identify when it’s time to retire your life safety harness:

  •   The harness has surpassed 10 years since the manufacture date.
  •   Webbing shows signs of cuts, significantly worn or frayed areas, soft or hard spots.
  •   Webbing shows signs of discolored or melted fibers.
  •   Stitching shows signs of pulled threads, abrasion or breaks.
  •   Hardware shows signs of damage, sharp edges, excessive wear or improper function.
  •   If the harness has been subjected to shock loads, fall loads, or abuse.
  •   If there is any doubt about the integrity of the harness.
  • If the harness demonstrates any of these conditions, it should be removed from service and destroyed.

  • Life Safety Rope, Webbing, Anchor Straps, Accessory Cord:
       

Since these products are nylon or textile based as well, they fall under the same inspection process as harnesses. A complete inspection of life safety rope and associated products includes not only a visual inspection but a tactile (or touch) inspection as well. The tactile inspection should be done with tension on the rope, webbing or strap. 

The inspector is looking to identify any of the following conditions:

  •   Chafed, glazed or discolored surfaces (these areas should receive a more thorough inspection).
  •   Abrasions or cuts in the sheath where the core is exposed.
  •   Variation of diameter of the rope that could indicate potential damage to the core fibers.
  •   Soft or hard spots that could indicate core damage or that the fibers have been over stressed.
  •   If the rope has been subjected to shock loads, fall loads or abuse.

If any of these conditions are noted, then the item should be retired and destroyed immediately. It is important to remember that an accurate history should be maintained for all life safety rope products. The date of manufacture should be identified and recorded as products are being put into service. Equipment inspectors or users should ensure that these products do not exceed their service life. As with harnesses, the amount, type and conditions of use can drastically reduce the service life of these products.

Carabiners:

Since carabiners are metallic, they do not fall under the ASTM service life recommendation of 10 years. As long as these products are in serviceable condition and properly maintained, they have an infinite service life. Even though they do not have a dedicated service life term, it is still important to conduct the same pre/post use and annual inspections. 

Some conditions that would require the equipment, such as carabiners, to be retired from service include:

  •   Carabiner has been dropped a significant distance.
  •   Exposed to heat sufficient enough to alter the surface appearance.
  •   Cracks, distortion or deep gouges.
  •   Corrosion or deep pitted rust. (Note: Surface rust may be removed with a fine abrasive cloth and coated with a preservative such as LPS #1.)
  •   Sharp edges that could cause damage to life safety rope (minor edges may be smoothed with the same process as rust removal).
  •   Gate does not line up when closed.
  •   Gate action does not return to closed position when opened and released.
  •   Locking mechanism does not fully engage.
  •   Complete history of use cannot be determined.
  • If any of these conditions exist, the equipment should be removed from service and destroyed. Records of use and inspection should be kept on these items even though the service life of the product is infinite.
Pulleys:

Pulleys, as with carabiners, are metallic in construction and do not have a service life recommendation. They will also have an infinite service life as long as they are in serviceable condition and are properly maintained. Pulleys fall under the same inspection requirements as carabiners. 

Below are some conditions that would require such equipment to be removed from service:

  •   Pulley has been dropped a significant distance.
  •   Exposed to heat sufficient enough to alter the surface appearance.
  •   Cracks, dents or elongation at the carabiner hole on side plates.
  •   Corrosion or deep pitted rust. (Note: Surface rust may be removed with a fine abrasive cloth and coated with a preservative such as LPS #1.)
  •   Deep scratches or gouges to side plates or sheave(s).
  •   Sharp edges that could cause damage to life safety rope (minor edges may be smoothed with the same process as rust removal).
  •   Side plates that do not line up at the carabiner hole.
  •   Elongation of the side plates at the sheave pin.
  •   Side plates that do not move freely.
  •   Sheave does not turn freely or significantly rubs against side plate.
  •   If the item has been subjected to shock loads, fall loads or abuse.
  •   If the history of use or manufacture date cannot be determined.

If any of these conditions exist, the equipment should be removed from service and destroyed. Records of use and inspection should be kept on these items even though the service life of the product is infinite.

DeScent control devices:

Descent control devices, if metallic, do not have a service life recommendation. If the device is constructed of plastic or other textile material, it will have a service life not to exceed 10 years. 

Below are some conditions that would require this equipment to be removed from service:

  •   Cracks, deformations or elongation to any portion of the device.
  •   Corrosion or deep pitted rust. (Note: Surface rust may be removed with a fine abrasive cloth and coated with a preservative such as LPS #1.)
  •   Deep scratches or gouges to any portion of the device.
  •   Sharp edges that could cause damage to life safety rope (minor edges may be smoothed with the same process as rust removal).
  •   Excessive wear to friction surfaces or cam (see wear indicator on some devices).
  •   If the device has been subjected to shock loads, fall loads or abuse.
  •   If the history of use or manufacture date cannot be determined.

If any of these conditions exist, the equipment should be removed from service and destroyed. Records of use and inspection should be kept on these items throughout their service life.

Ascenders:

As with previously mentioned equipment, the same inspection procedures apply to ascenders. 

Below are some of the conditions that would require ascenders to be removed from service:

  •   Cracks, deformations or elongation to any portion of the device.
  •   Corrosion or deep pitted rust. (Note: Surface rust may be removed with a fine abrasive cloth and coated with a preservative such as LPS #1.)
  •   Deep scratches or gouges to any portion of the device.
  •   Sharp edges that could cause damage to life safety rope (minor edges may be smoothed with the same process as rust removal).
  •   Fouled teeth on cam (handled type ascenders).
  •   Excessive wear to surface of cam.
  •   Damage to rivets (if applicable).

If any of these conditions exist, the equipment should be removed from service and destroyed. Records of use and inspection should be kept on these items throughout their service life.

Service history is an extremely important part of ensuring life safety equipment is properly maintained and that service life is not exceeded. Not only does this help rescue teams control inventory and operational capability of equipment by documenting each use and inspection, it also assists the teams in forecasting budget costs for the replacement of items that are nearing the end of their service life.

Maintaining records of the manufacturer’s information received when purchasing new equipment is vital to identifying and keeping track of the manufacture date. It is also important to keep this information on file for the exact procedures for inspecting and removing equipment from service. If the manufacture date of equipment, such as life safety rope and harnesses, cannot be identified; it poses extreme liability for agencies or facilities whose teams may potentially be operating with equipment that has passed its service life. It could also create a compromise in the safe operation of the equipment. Also, if record-keeping of equipment inspection and use is not a primary focus, it could potentially expose team members to operating with unsafe equipment due to abuse or excessive/extreme conditions that go undetected.

All team members should be qualified and knowledgeable enough to perform pre- and post-use inspections of equipment. It is crucial that all members document each use of equipment, denote any deficiencies, and report to the proper person. One person should be designated to perform the competent person annual inspection. This person should have complete knowledge of the equipment and inspection procedures as well as the authority to keep or remove equipment from service as they see fit. If team members are unable to fill this role, a qualified third party with applicable manufacturer certifications in competent person inspection should be brought in to assist in determining the condition and estimated service life of rescue equipment. For assistance from our rescue equipment professionals, call us at 800-647-7626.

read more 

Worth the Wait...OSHA’s Confined Space Standard for Construction

Tuesday, December 15, 2015

In our opinion, the new OSHA regulation for Confined Spaces in Construction (Subpart AA of 1926) was worth the wait! This new standard is well thought out and includes some significant as well as subtle differences from the General Industry Permit Required Confined Space Standard 1910.146.

In this article, we will point out additional requirements for compliance for construction activities involving confined spaces. With the exception of residential construction, the final rule became fully enforceable as of October 2, 2015.   

These additional requirements instituted by OSHA are due to the dynamic nature of the construction environment. Dynamic in terms of the continuously evolving configuration of the workplace, and also in the diverse and ever-changing makeup of employers and employees depending on the phase of construction. We feel the most significant differences are not complete shifts in an administrative or operational approach to conducting safe permit required confined space operations, but more of an increased emphasis and clarification of the requirements that were already in place in the General Industry regulations.

“We believe the new standard offers an increased emphasis and clarification of the requirements that were already in place in the General Industry regulations.”

Please pay particular attention and review 1926 Subpart AA for requirements to ensure clear communication and coordination between the varied entities that work in or adjacent to the construction areas that have confined spaces. The lack of accurate communication and coordination continues to be a cause of confined space fatalities.

The need to communicate with the controlling contractor and entry employers regarding any operations that may have introduced a hazard into a confined space is of paramount importance. The failure to do so has repeatedly led to disaster for unsuspecting follow-on entrants into those confined spaces. Likewise, understanding and communicating the types of operations adjacent to, or in the proximity of confined spaces that may negatively affect that entry operation, must be coordinated and communicated.

Also, several new roles and responsibilities have been added to the confined space regulations. One of the most important new roles is that of the “competent person” for confined spaces.

Having a dedicated individual (Competent Person) who has the expertise and background to perform this critical function will undoubtedly result in lives saved.

OSHA has also added clarification to the need to ensure that the designated confined space rescue service is not only available at the time entry operations commence, but also that rescue service must now agree to notify the entry employer if a situation arises that renders them unable to respond to an emergency.


So let’s take a look at some of the particulars of these new requirements and clarifications.

1. Allows an Entry Permit to be suspended, instead of cancelled in the event of changes from the entry conditions list. Ref: 1926.1205(e)(2)

This differs from 1910.146(e)(5) which requires an employer to terminate entry and cancel the entry permit. This change has specific requirements and limits. Suspending a permit is only allowed when a condition that is not allowed under the entry permit arises in or near the permit space and that condition is: (a) temporary in nature; (b) does not change the configuration of the space; and/or, (c) does not create any new hazards within it.

The first action of the entry supervisor must be to terminate entry and ensure all authorized entrants have safely evacuated the space. At that point, the entry supervisor can suspend or cancel the entry permit. Prior to authorizing reentry, the entry supervisor must fully reassess the space before allowing reentry.

2. Includes more detailed provisions requiring coordinated activities when there are multiple employers at the worksite.

This is an important difference compared to the General Industry regulation. It is required due to the ever-changing makeup of the construction workforce and most especially when the need for workers from multiple employers must enter permit spaces at the same time, or perform work activities in the vicinity of the permit space – thus, the potential to introduce new hazards to the space that all employers on site must be aware of and prepare for.

This final provision differs from 1910.146(d)(11) by specifically addressing the need to coordinate work activities through the controlling contractor, as well as with employers working outside the permit space when their work could foreseeably affect conditions within a confined space. The new construction industry standard goes far beyond by outlining the need for coordinated activities between multiple employers by identifying specific roles – host employer, controlling contractor and the entry employer. (Refer to Chart.)

OSHA 1926.1203 General Requirements paragraph (h) includes specific communication and coordination requirements between the various employers and contractors. The host employer must provide certain information they may have about confined spaces to the controlling contractor.

Required information includes items such as:
(a) The location of known permit spaces;
(b) The nature of hazards in those identified permit spaces;
(c) The reason for classifying the space as permit required; and,
(d) Any additional precautions that the host employer, any other controlling contractor, or entry employer have previously employed to protect their employees must be provided.

It is also incumbent upon the controlling contractor to obtain information from the host employer regarding the hazards associated with the permit spaces and any information on previous entry operations into that permit space.

The controlling contractor is responsible for passing information to any entry employer that may authorize entry into that permit space as well to any other entity at the worksite that could foreseeably create a hazard that may affect that confined space.

The entry employer must obtain from the controlling contractor all the information regarding the particular permit space hazards and entry operation information. Additionally, the entry employer must inform the controlling contractor of the provisions of their permit required confined space program and any hazards they expect to confront or create during their entry operations.

It is also very important that the controlling contractor and all entry employers coordinate their activities when multiple entry employers have entrants in the same space, or when other activities around the permit space may create a hazard that affects the confined space entry operation.

At the completion of entry operations, it is equally important that all entities including entry employers and controlling contractors communicate information regarding the particulars of any given entry. This information must include the permit space program followed during the entry operation as well as any hazards confronted or created during entry. Of particular importance is to communicate any hazards created within the confined space that may still be in place. The controlling contractor in turn communicates all of this information to the host employer.

3. Requires a Competent Person to evaluate the work site and identify confined spaces, including permit spaces.

Along with the increased need for strong communications and coordination, the addition of the role of competent person for confined spaces may be one of the most important differences between the general industry standard and the construction standard.

It may seem to be a subtle difference in the two standards’ requirements, but now there is a specific role, or an identified position for conducting an evaluation of the worksite to determine the presence of confined spaces, a determination of the known or potential hazards associated with those confined spaces, and that has the authority to eliminate the identified hazards.

The competent person for confined spaces must have a high degree of expertise in identifying confined spaces and to make an accurate determination of the nature of any known or potential hazards associated with the confined space that would trigger it to be classified a permit space. In the event that the configuration or use of a non-permit required confined space changes, or a new hazard is introduced, the entry employer must have the competent person reevaluate that space to determine if it has become a permit required confined space. This is also true for any confined space that may not have initially been adequately evaluated to identify any known or potential hazards that would require that space to be classified a permit required confined space.

4. Designated rescue service must agree to notify the entry employer immediately if it becomes unavailable.

Although it has always been implied in the general industry standard that the entry supervisor would ensure the designated rescue service is available during entry operations, 1926.1211 explicitly requires an employer to designate a rescue service – in turn, the rescue service agrees to notify the entry employer immediately if they become unavailable to respond.

5. Provide an early warning system for non-isolated engulfment hazards.

This is primarily for sanitary and storm drain entry operations, but is equally important for any entry operations of a similar nature. The type of early warning systems can be as simple as posting an individual as an “upstream watch” to more complex systems such as electronic sensors or camera systems. Whatever system is used to detect an impending engulfment hazard, it must include a means of communications to provide advanced warning to the downstream entrants in time to safely evacuate the space.

We encourage our readers to spend time studying the new regulation, and in particular understanding the points we have highlighted in this article as well as in our downloadable Confined Spaces in Construction Safety Poster. If you have questions, or if we may be of service, please contact us at 800-647-7626.

 

read more 

Two New York contractors indicted for manslaughter after worker is killed in trench collapse

Monday, October 19, 2015

OSHA reports that two workers are killed every month in trench collapses. Just recently, OSHA cited two contractors following a trench collapse that buried 22-year-old laborer Carlos Moncayo beneath tons of soil and debris at a Manhattan construction site. OSHA found that Moncayo's death could have been prevented if the general contractor and subcontractor had provided cave-in protection for the trench or braced an adjacent section of undermined and unsupported sidewalk. In connection with Moncayo's death, officials from both companies were indicted for manslaughter and other charges in the New York State Supreme Court on Aug. 5.

"Managers from these companies were aware of these deadly hazards and did not remove employees from the trench, even after warnings from project safety officials." 

OSHA issued each employer two citations for willful violations of workplace safety standards on Oct. 5. Proposed fines total $280,000 – $140,000 for each company – the maximum allowable fines under the Occupational Safety and Health Act. A willful violation is committed with intentional, knowing or voluntary disregard for the law's requirements, or with plain indifference to worker safety and health. 

"Carlos Moncayo was a person, not a statistic. His death was completely avoidable. Had the trench been guarded properly against collapse, he would not have died in the cave-in. This unconscionable behavior needlessly and shamefully cost a man his life."
Quotes by Kay Gee, OSHA Area Director-Manhattan

Updated OSHA guide on Trenching and Excavation Safety

Trench and excavation work are among the most hazardous operations in construction. Because one cubic yard of soil can weigh as much as a car, an unprotected trench can be an early grave. OSHA's updated guide to Trenching and Excavation Safety highlights key elements of the applicable workplace standards and describes safe practices that employers can follow to protect workers from cave-ins and other hazards. A new section in the updated guide addresses safety factors that an employer should consider when bidding on a job. Expanded sections describe maintaining materials and equipment used for worker protection systems as well as additional hazards associated with excavations.

Remember, an unprotected trench can become an early grave. Learn how to keep workers safe. Download these OSHA Guides for details.

OSHA Guide to Trenching and Excavation Safety
Trenching and Excavation Safety Fact Sheet

read more 

Technical Rescue Incident Preparedness: Hazard Identification and Risk Assessment

Wednesday, July 08, 2015

Reported by James Breen, Special Projects Manager for Roco Rescue, Inc.

Whether you’re a relatively new or a well-established Technical Search and Rescue (TSAR) organization, following an established Hazard Identification and Risk Assessment process is a great way to ensure you’re prepared for the “Big One."

The “Big One” is that incident where you’re called upon to deliver on the organizational investment of having a TSAR capability. A great deal of organizational time, money, and effort is invested in developing, maintaining, and deploying a Rescue Team. Plant Administrators, Fire Chiefs, and elected officials (private board members or public officials) want to see a return on that investment when their rescue service is called into action to save a life.  

The purpose of this article is to assist the Rescue Team Leader (RTL) and aspiring RTL (because we should always be developing our replacement) in establishing a Rescue Team, developing a new TSAR capability, or ensuring an established Rescue Team is adequately prepared for the “Big One."

Firstly, if there is a potential for a TSAR incident to occur within your jurisdiction, NFPA 1670 requires the authority having jurisdiction (AHJ) to address a number of “General Requirements” found in Chapter 4. The review and completion of these requirements are usually a function of the Rescue Team Leader along with key management personnel who authorize, budget, schedule, and equip the Rescue Team.

The format of Chapter 4 is useful for all Rescue Teams, whether newly formed or long established. It is an excellent tool for ensuring some of the foundational aspects of preparedness and organizational structure are (or have been) properly established.  Most “senior rescuers” (not those on Medicare but those that have the respect, time, and experience that makes them leaders in technical rescue) will tell you that the TSAR incident potential, including their hazards and risks, change as industrial processes are updated, installed, or eliminated. 

Key to all emergency response success is planning and preparation. However, incident preparation should be driven by the types of emergency incidents that have a potential for occurring within a given jurisdiction. This is the starting point for determining rescue capabilities, SOP/SOG’s, staffing, training, and equipment. 

The Hazard Identification and Risk Assessment is one method for assessing incident potential. NFPA defines:

•  Hazard Identification - The process of identifying situations or conditions that have the potential to cause injury to people, damage to property, or damage to the environment. 

•  Risk Assessment - An assessment of the likelihood, vulnerability, and magnitude of incidents that could result from the exposure to hazards. 

This process identifies the possibility of conducting TSAR operations within a jurisdiction by evaluating environmental, physical, social, and cultural factors that influence the scope, frequency and magnitude of a potential TSAR incident. It also addresses the impact the incident has on the AHJ to respond and conduct operations while minimizing threats to rescuers (NPFA 1670, 4.2.1 and 4.2.2). The standard lists a number of scientific methodologies in its annex but in the spirit of keeping it, we’ll approach this process using a Preliminary Checklist. (See Sample Checklist.)

Once completed, the checklist may have entries that require further analysis, identify a need to develop or expand a capability, or require entering into an agreement with an external resource. 

This checklist is for day-to-day incident responses under predictable jurisdictional response conditions and should not be used for disaster scenarios where large scale regional and federal resources will be required to mitigate the incident. These scenarios should be addressed through Emergency Response Plans. 

Most fire departments and other emergency response organizations want to maintain a response capability that match potential incidents in order to be operationally effective, provide for rescuer safety, and have positive incident outcomes.  

A Hazard Identification and Risk Assessment is an excellent way to evaluate your organization’s preparedness level for technical rescue incidents based the potential for one to occur; it also aids in the development of specific capability. 

About the Author: James (Jim) Breen is Special Projects Manager for Roco Rescue where he handles a wide variety of projects and provides program support, while still engaging in instructional services. Jim previously served for over 23 years with the Albuquerque Fire Department and retired as the agency's Fire Chief in 2013. He previously had served as a Battalion Commander for the city’s busiest battalion, and has extensive experience in Incident Command and Heavy Rescue Operations. He is a former USAF Pararescueman and a Rescue Squad Manager and Task Force Leader with NMTF-1 where he was deployed to several national disasters.

read more 

Combustible Dust and Confined Spaces

Monday, January 05, 2015

In January 2004, an explosion at the West Pharmaceutical Company in Kingston, NC killed 6 workers and injured 34 others. Two firefighters were injured during the response to the incident.  One month later, an explosion and fire occurred at the CTA Acoustics manufacturing facility in Corbin, KY, killing 7 workers. In February 2008, an explosion at the Imperial Sugar Company facility in Wentworth, GA, killed 13 workers and injured 42 others. Three very different types of facilities with very different products, but with one thing in common—dust!

"A 'safe’ area can become a ticking bomb if ventilation results in the suspension of otherwise stable dust accumulations."

The Chemical Safety Board reported that there were 281 explosions of combustible dust in the United States between 1980 and 2005. These explosions resulted in 199 deaths and 718 injuries. And these are just the actual explosions. There are countless more combustible dust environments just waiting for the right (or wrong) conditions to align to become the next fatal explosion. The fact is that with the exception of silicon or sand, every kind of dust is potentially combustible to some degree.

Combustible dusts are measured on a “deflagration index,” (see box) which measures the relative explosion severity compared to other dusts. They range from such seemingly innocuous items such as dust from powdered milk and egg whites that can create “weak explosions,” to dusts from items such as magnesium and aluminum that can result in “very strong explosions.” But I think we can all agree that no explosion, even a “weak” explosion, is a good explosion—especially if it occurs during rescue operations. 

As rescuers, you should already be familiar with the “fire triangle.” To understand the danger of combustible dusts, you should also be familiar with the “dust explosion pentagon.” The dust explosion pentagon consists of the following:

-       Combustible Dust (Fuel)

-       Ignition Source

-       Oxygen

-       Dispersion of dust (suspension)

-       Containment of the dust in a confined or semi-confined area (Enclosures/Building/Confined Space)

Rescuers should be on the lookout for any appreciable accumulation of dust when sizing up a rescue situation. Keep in mind that your atmospheric monitor containing a sensor for combustible gases is not effective for detecting a hazard from combustible dust.  

Always remain aware that in a suspended state, dust becomes explosive. Dust explosions occur when combustible dust is present, forms a dust cloud in an enclosed environment, and is exposed to oxygen and an ignition source. The explosion occurs as a result of the rapid burning of the dust cloud, which creates a rapid pressure rise in the enclosed area or confined space. 

A dust pile that may burn while an ignition source is being applied, then go out immediately or shortly after the ignition source is removed, can become lethally explosive when scattered and suspended in the air. 

Always consider the potential for combustible dust in any rescue situation, particularly when ventilation of an enclosure, building, or confined space is considered. A “safe” area can become a ticking bomb if ventilation results in the suspension of otherwise stable dust accumulations.

This article was written by Robert Aguiluz, who is currently an Administrative Law Judge for the State of Louisiana. He is also an attorney who specializes in Occupational Safety and Health Law, and regulatory and compliance issues. He is a former Certified Safety Professional and Roco Rescue Instructor with over twenty years’ experience in both industrial and municipal emergency response and rescue.
 

Combustible Dust Considerations for Emergency Responders:

1.  Know your response area and the types of industry that may have the potential for combustible dust. If you are performing standby rescue duties, meet with the SH&E management team to learn about any combustible dust hazards at their facility.

2.  Become familiar with the “deflagration index” for various types of materials. See sample Chart below.

Examples of Kst Values for Different Types of Dust

 

3.  Consider the effect of ventilating a space that has accumulations of combustible dust.

        •  Will you cause the dust to become suspended?
        •  Will the suspended moving dust create a static charge/discharge and become a source of ignition?
        •  Can your ventilation equipment become a source of ignition?

4.  Is there information to review on the SDS (Safety Data Sheet) regarding the material’s potential to become combustible dust?


HELPFUL LINKS:

OSHA Quick Card: Prevent Dust Explosions

“Firefighting Precautions at Facilities with Combustible Dust”

“Hazardous Communication Guidance for Combustible Dust”

“Combustible Dust in Industry: Preventing and Mitigating the Effects of Fire and Explosions”

“NFPA 654: Standard for the Prevention of Fire and Dust Explosions”

 



















read more 

Tips for Using Roco’s Confined Space Types Chart

Thursday, December 11, 2014

Is your rescue team (or service) truly capable of rescuing workers from the various types of confined spaces on your site?

What about rescue services for the contractor who’s working on your site with personnel entering permit spaces?

As a rescue team, have you considered all the angles in preparing for confined space rescue?

Refineries, plants and manufacturing facilities have a wide range of confined spaces – some having only a few, where others may have hundreds. In OSHA’s 1910.146, a big consideration is allowing rescue teams the opportunity to practice and plan for the various types of confined spaces they may be required to respond for rescue.

Obviously, it would be impossible to practice in each and every one of the spaces – from a time standpoint as well as most times the spaces are operating and functioning units within the plant. That’s why section (k) of 1910.146 also allows practice from “representative” spaces.

Using OSHA’s guidelines for determining representative spaces, Roco’s Confined Space Types Chart was developed to assist rescue teams in planning and preparing for the various types of spaces in their response area. Our CS Types Chart allows you to categorize permit spaces into one of six types – which can be used to prepare rescue plans, determine rescue requirements and practice drills or evaluate a prospective rescue service.

While there may be hundreds of permit spaces on site, many of them will fit into one of these six types and require the same (or similar) rescue plan. Of course, there are always unique situations in addition to physical characteristics, such as space-specific hazards or specialized PPE requirements, but we feel this chart is a valuable tool that can be used for critical planning and preparation for confined space rescue operations.

Over the decades here at Roco, we have seen just about every type of confined space configuration there is. We’ve also learned that it is imperative to understand the physical limitations of the space access and internal configuration and how this affects the choice of equipment and techniques in order to provide a viable, safe rescue capability.

During an emergency is NOT the time to learn that your backboard or litter will not fit through the portal once the patient is packaged. By referring to the Types Chart and practicing simulated rescues from the relevant types of spaces will help identify these limitations in a controlled setting instead of during the heat of an emergency.

Here’s an example


Most backboards are 16 to 20-inches wide. With an 18-inch round portal, the backboard will only fit through the “widest” part (or diameter) of the opening. In effect, this cuts the size of the opening in half (see illustration). If the thickness of the backboard is approximately 1-inch, then you only have about 7 or 8-inches of space remaining to clear the patient. This is one example where all the rescue equipment components may fit into the space but cannot be removed once the patient is packaged.

 


On the Roco Types Chart, you will note that there are six (6) general types identified, which are based on portal opening size and position of portal. For example, Types 1 and 2 are “side entries”; Types 3 and 4 are “top entries”; and Types 5 and 6 are “bottom entries.” There are two types of each due to portal size as discussed above. Openings greater than 24-inches will allow packaged patients on rigid litters or rescuers using SCBA to negotiate the opening. Spaces less than 24-inches will require a higher level of expertise and different packaging and patient movement techniques.
Confined Space Portal Types defined by OSHA

Because OSHA 1910.146 requires employers to allow access for rescue planning and practice purposes, here’s an opportunity to be better prepared and practiced on thetypes of spaces in the response area. So, get out your clipboard, tape measure, some sketch paper, and a flashlight (if safe to do so) in order to view as much of the interior of the space as you can. Gaining access to architectural or engineering drawings may also be helpful in determining the internal configuration of the space for the times that actual entry is not feasible. Armed with this information, it is time to “type” the spaces in your response area using the Roco CS Types Chart.

Once this is completed, pay particular attention to spaces that have been identified as Types 1, 3, or 5. These spaces have restrictive portals (24-inches or less) and are considered “worst case” regarding entry and escape in terms of portal size. As mentioned, this is very important because it will greatly influence the types of patient packaging equipment and rescuer PPE that can be used in the space.

Another critical consideration is accessibility to the space – or “elevation” of the portal. While the rescue service may practice rescues from Top, Side and Bottom portals – if it’s from ground level, that’s very different from a portal that’s at a 100-ft elevation. Here’s where high angle or elevated rescue techniques normally are required for getting the patient lowered to ground level. This is important! Rescue practice from a representative space needs to be a “true” representation of the kind of rescue that may be required in an emergency.

In Appendix F, OSHA offers guidelines for determining Representative Spaces for Rescue Practice. OSHA adds that “teams may practice in representative spaces that are ‘worst case’ or most restrictive with respect to internal configuration, elevation, and portal size.” These characteristics, according to OSHA, should be considered when deciding whether a space is truly representative of an actual permit space.

Roco Note: Practice in portals that are greater than 24-inches is also important so that rescuers can practice using all proper patient packaging protocols that may be allowed with larger size openings.

(1) Internal Configuration – If the interior of the space is congested with utilities or other structural components that may hinder movement or the ability to efficiently package a patient, it must be addressed in training. For example, will the use of entrant rescuer retrieval lines be feasible? After one or two 90 degree turns around corners or around structural members, the ability to provide external retrieval of the entrant rescuer is probably forfeited. For vertical rescue, if there are offset platforms or passageways, there may be a need for directional pulleys or intermediate haul systems that are operated inside the space.

What about rescues while on emergency breathing air? If the internal configuration is so congested that the time required to complete patient packaging exceeds the duration of a backpack SCBA, then the team should consider using SAR. Will the internal configuration hinder or prevent visual monitoring and communications with the entrant rescuers? If so, it may be advisable to use an “internal hole watch” to provide a communication link between the entrant rescuers and personnel outside the space.

What if the internal configuration is such that complete patient packaging is not possible inside the space? This may dictate a “load and go” type rescue that provides minimal patient packaging while providing as much stabilization as feasible through the use of extrication-type short spine boards as an example.

(2) Elevation – If the portal is 4 feet or greater above grade, the rescue team must be capable of providing an effective and safe high angle lower of the victim; and, if needed, an attendant rescuer. This may require additional training and equipment. For these situations, it is important to identify high-point anchors that may be suitable for use, or plan for portable high-point anchors, such as a “knuckle lift” or some other device.

(3) Portal Size – The magic number is 24 inches or less* in diameter for round portals or in the smallest dimension for non-round portals. It is a common mistake for a rescue team to “test drive” their 22-to-23-inch wide litter or backboard on a 24-inch portal without a victim loaded and discover that it just barely fits. The problem arises when a victim is loaded into the litter. The only way the litter or backboard will fit is at the “equator” of the round portal. This will most likely not leave enough room between the rigid litter or backboard and the victim’s chest, except for our more petite victims.

And, it’s already difficult to negotiate a portal while wearing a backpack SCBA. For portals of 24 inches or less, it is nearly impossible. DO NOT under any circumstances remove your backpack SCBA in order gain access to a confined space through a restricted portal or passageway. If the backpack SCBA will not fit, it is time to consider an airline respirator and emergency escape harness/bottle instead.

By using the Roco Types Chart in preplanning these “worst case” portals and the spaces that fall into the type 1, 3, or 5 categories, the rescue team will be able to determine in advance that different equipment or techniques may be required in order to effect rescue through these type portals.

*ROCO NOTE: In Appendix F, OSHA uses “less than 24-inches” in Section B (#8); however, in (3) Portal Size (a) Restricted, it uses “24-inches or less,” which we are using in our Types Chart.

(4) Space Access – Horizontal vs. Vertical? Most rescuers regard horizontal retrievals as easier than vertical. This is not always the case. If there are floor projections, pipe work or other utilities, or just a grated floor surface, it may create an incredible amount of friction or an absolute impediment to the horizontal movement of an inert victim. In this case, the entrant rescuers may have to rely on old-fashioned arm and leg strength to maneuver the victim. Once the victim is moved to the portal, it may become an incredibly difficult task to lift a harnessed victim up and over the lower edge of the portal. Even if the portal is as little as three feet above the level of the victim, it is very difficult to lift a victim’s dead weight up and over the portal lower edge. Sometimes using a long backboard as an internal ramp may do the trick. For vertical access, there may be a need for additional training or equipment to provide the lifting or lowering capability for both the victim and the entrant rescuer.

Appropriate rescue pre-plans and realistic rescue practice can be one of the best ways to be prepared for confined space rescues – and allow rescuers to operate more safely and effectively in an emergency situation. Roco CS Types Chart can be used as a quick reference when doing an initial assessment of confined spaces and permit-required confined spaces. It helps in designing rescue training and practice drills that will truly prepare rescuers for the particular spaces on site. The information can also be used when conducting performance evaluations for your team, a contracted stand-by rescue service, a local off-site response team, or a contractor who supplies their own rescue services while working in your plant.

In section (k), OSHA requires employers to evaluate the prospective rescue service to determine proficiency in terms of rescue-related tasks and proper equipment. If you are relying on a contracted rescue service or if an on-site contractor is providing their own rescue capabilities, we encourage you to have them perform a simulated rescue from a representative type space. Otherwise, if an incident occurs and the “rescuers” you are depending on are not capable of safely performing a rescue, your company could be culpable.
read more 

OSHA's Confined Space Construction Rule Under OMB Review

Tuesday, November 25, 2014

OSHA's final rule on confined spaces in construction is being reviewed by the Office of Information and Regulatory Affairs. The review is one of the final steps required before OSHA can formally publish the rule.

OIRA, which is a branch of the White House's Office of Management and Budget, received the rule for review on Nov. 14. The office is limited to a 90-day review but can request an extension. The rule has been in the works since at least 2003; the proposed rule was published in 2007.

Several provisions in the proposed rule are similar to those found in the agency's confined spaces standard for general industry. That rule, issued in 1993, mandates specific procedures and includes requirements such as a written program, atmospheric monitoring and training.

Stand by for additional updates on this regulation.

News story from the National Safety Council. 

 

read more 

Previous Next
1 2 3 4 5 .. 8

RescueTalk (RocoRescue.com) has been created as a free resource for sharing insightful information, news, views and commentary for our students and others who are interested in technical rope rescue. Therefore, we make no representations as to accuracy, completeness, or suitability of any information and are not liable for any errors, omissions, or delays in this information or any losses, injuries, or damages arising from its display or use. All information is provided on an as-is basis. Users and readers are 100% responsible for their own actions in every situation. Information presented on this website in no way replaces proper training!