Roco Rescue



Hierarchy of Fall Protection

Tuesday, August 27, 2013

Roco Rescue Releases Two New Fall Protection Programs for OSHA Compliant Workplaces
Are you concerned about the potential for falls from height at your workplace?

Do you feel that your workers are not adequately trained in recognizing fall hazards, or do not have the proper training in the inspection and use of their fall protection equipment?

Does your fall protection program consider all the angles regarding work at height and fall protection?

Click on the graphic to the left to download our free Roco safety poster on the Hierarchy of Fall Protection.


New Roco Fall Pro Course: Competent Person for Fall Protection

Roco Rescue is proud to announce the addition of a comprehensive Competent Person for Fall Protection course as an addition to our already extensive catalog of Technical Rescue, Compliance, and Safety courses.

The two day (16 hour) Competent Person course focuses on OSHA and ANSI requirements and guidance to provide the Competent Person the knowledge and skills that will enable them to provide their employer a solid foundation for establishing or improving their comprehensive fall protection program

This course emphasizes legislated as well as consensus standard fall protection requirements and guidance for various industries as well as exposing the attendees to a variety of modern fall protection equipment solutions and techniques. The hierarchy of fall protection is used as the building block for the most protective approach for abating fall hazards in the workplace. The attendee will have a solid understanding of how to evaluate fall hazards in the workplace by completing a field exercise using a “Fall Hazard Survey Report Template” that identifies fall hazards and uses the hierarchy of fall protection to provide the most protective and feasible solution to address the identified hazards.

Exposure to modern fall protection equipment and emerging technologies -especially the availability of pre-engineered fall protection solutions- arms the student with an extensive toolkit for addressing existing fall hazards in their workplace. Equipment and equipment systems such as body support, connectors, modern lanyards, self-retracting lanyards, horizontal and vertical lifelines, anchor connectors, as well as other specialty equipment will be covered and examples will be available to employ during the class.

The often overlooked need to understand and provide a rescue capability for fallen/suspended workers and workers isolated at height will be covered. The use of the “Roco Suspended Worker Rescue Pre-plan” will be covered in a live field exercise. Included will be a demonstration and practice rescues utilizing a pre-engineered rescue system that may provide the “prompt rescue capability” of fallen workers for most situations as required by both OSHA and ANSI.

New Roco Fall Pro Course: Competent Person - Train the Trainer:

Upon completion of Roco’s Competent Person for Fall Protection Course we offer the option to stay on for our Competent Person Trainer course. This course includes an additional two days (16 hours) that prepares the Competent Person to train their own employees to the level of Authorized and Competent Persons. The course opens with a thorough lecture/discussion on the adult learner.

Tried and proven steps that are invaluable in providing a systematic workforce education program specific to Competent and Authorized Persons for fall protection are covered. Areas such as gap analysis, instructional triads, three part learning objectives, measurements, dealing with the adult learner and their varied backgrounds are just some of the preparatory lessons. This is followed by a thorough section on preparing and utilizing lesson plans which are then put into practice as the attendees prepare for and deliver actual lessons to their fellow students on the various teaching modules.

The Competent Person for Fall Protection and the Competent Person Trainer Courses are available as private training at Roco Training Center in Baton Rouge, Louisiana or Roco can deliver the course at your facility as a private class. Please call (800) 647-7626 for more details or to schedule.

read more 

Suspension Trauma Explained: Safety Poster from Roco

Monday, April 22, 2013

What exactly is suspension trauma? How does it occur? And what can be done to prevent it?

Suspension Trauma - otherwise known as harness pathology, distributive shock, or orthostatic intolerance - has recently been identified by OSHA as a workplace hazard particular to Authorized Workers using personal fall arrest systems (PFAS). More and more employers are becoming aware of this workplace hazard and are taking appropriate steps to protect their employees. The range of understanding on the cause of the hazard, as well as how to protect against it, is pretty vast.

Our new Suspension Trauma Safety Poster is a tool to raise awareness of this hazard. It illustrates the pathological path that a fallen suspended worker may experience. Please share with colleagues, fellow safety professionals and especially workers that use PFAS. It could save a life.

Just click to download a printable pdf.

The rate at which suspension trauma develops varies from individual to individual and is not reliably predictable. However, there are factors that influence the potential for suspension trauma as well as the speed of onset. Here are a few examples:
  • • Underlying physical condition of worker including any pre-existing respiratory or cardiac conditions;
  • • Worker’s ability to handle stress and anxiety;
  • • Harness selection, fit, and adjustment;
  • • Traumatic injuries that may have occurred during or before the fall; and,
  • • Knowledge and the use of equipment or techniques to delay the onset of suspension trauma such as temporary leg stirrups or simply “bicycling the legs.”

Roco also offers a course called Suspended Worker Rescue to educate rescuers who respond to suspended workers.  

Pathological Effects of a Fallen Worker in Danger of Suspension Trauma

For those of you who prefer a more detailed explanation, here's the narrative from Roco Chief Pat Furr. 

1. Leg Circulation: A fall arrest harness does a great job of dissipating the energies generated during a fall arrest through the long axis of the human body. After all motion has stopped, that same harness – particularly the dorsal attachment configuration – will most likely impose pressure to the femoral vein that is the primary blood vessel that returns blood from the legs towards the heart. In fact, in order to pass certification testing, these harnesses must not allow the test mannequin to assume greater than a 30 degree forward lean upon suspension. Any degree of forward lean will exert leg strap pressure on the femoral vein which impedes blood return. To compound this, the human body relies on what is known as the muscle/venous pump to assist the blood return from the legs to the heart. In suspension, the worker often forgets to bicycle their legs to create this muscle/venous pump. The trapped blood in the legs creates what is known as distributive shock as more and more blood is trapped in the legs; there is less to circulate for the rest of the body (brain, heart, lungs, and kidneys). Additionally this blood becomes highly acidic and toxic with metabolic wastes.

2. Heart Circulation: As the body goes into distributive shock, the heart must increase the rate and strength of its contractions to compensate. To compound this, the suspended worker may be experiencing a high degree of fear and anxiety, which releases adrenalin into the blood stream which also causes the heart to work harder and faster. This places increased demands on the heart, which is receiving less blood flow and thus less oxygen. The heart becomes irritable and is prone to localized tissue damage, dysrhythmias or both. This is especially a concern once the worker is rescued and the toxic blood is allowed to surge from the legs to the irritable heart. This is known as reflow syndrome and has caused several victims to go into sudden cardiac arrest upon rescue.

3. Brain Circulation: As the victim goes into distributive shock, or worst case, suffers cardiac arrest, the brain is deprived of adequate blood supply and this can lead to unconsciousness. If the victim faints the airway can be blocked by the head position or even by a poorly adjusted harness that allows the chest strap to block the airway. That is a difficult statement to write into a fatality report “Cause of Death: Strangulation by Victim’s Own PPE.”  If the victim’s heart stops, we can expect permanent brain damage or death in as little as four minutes.

So it should be obvious that a prompt rescue capability must be ensured by any employer that has Authorized Persons using PFAS. This can be accomplished in many ways. Roco has a variety of training courses that are specifically designed to provide that prompt rescue capability for fallen/suspended workers.

For more information please contact Roco Rescue at 800-647-7626 or submit a question to our Tech Panel.
read more 

Lanyard Safety

Tuesday, December 04, 2012

Here's a question from one of our readers: How can you test a lanyard to determine if it is safe to use? Is there a standard checklist or procedure?

Answer from the Roco Tech Panel: As with all safety and rescue gear, we recommend that you inspect, use and care for it in strict accordance with the manufacturer’s instructions. Of course, all equipment should be carefully inspected before and after each use. And, as we always say, “If there’s any doubt, throw it out!” Sometimes it’s less expensive to simply replace the gear versus going through any elaborate testing process. We did find the following information regarding lanyard inspections in an “OSHA Quick Takes” document. Thank you for your question!

Lanyard Inspection

To maintain their service life and high performance, all belts and harnesses should be inspected frequently. Visual inspection before each use should become routine, and also a routine inspection by a competent person. If any of the conditions listed below are found, the equipment should be replaced before being used.

When inspecting lanyards, begin at one end and work to the opposite end. Slowly rotate the lanyard so that the entire circumference is checked. Spliced ends require particular attention. Hardware should be examined under procedures detailed below.

Snaps: Inspect closely for hook and eye distortion, cracks, corrosion, or pitted surfaces. The keeper or latch should seat into the nose without binding and should not be distorted or obstructed. The keeper spring should exert sufficient force to firmly close the keeper. Keeper rocks must provide the keeper from opening when the keeper closes.

Thimbles: The thimble (protective plastic sleeve) must be firmly seated in the eye of the splice, and the splice should have no loose or cut strands. The edges of the thimble should be free of sharp edges, distortion, or cracks.

Steel Lanyard:
While rotating a steel lanyard, watch for cuts, frayed areas, or unusual wear patterns on the wire. The use of steel lanyards for fall protection without a shock-absorbing device is not recommended.

Web Lanyard: While bending webbing over a piece of pipe, observe each side of the webbed lanyard. This will reveal any cuts or breaks. Due to the limited elasticity of the web lanyard, fall protection without the use of a shock absorber is not recommended.

Rope Lanyard: Rotation of the rope lanyard while inspecting from end to end will bring to light any fuzzy, worn, broken or cut fibers. Weakened areas from extreme loads will appear as a noticeable change in original diameter. The rope diameter should be uniform throughout, following a short break-in period. When a rope lanyard is used for fall protection, a shock-absorbing system should be included.

Shock-Absorbing Packs
The outer portion of the shock-absorbing pack should be examined for burn holes and tears. Stitching on areas where the pack is sewn to the D-ring, belt or lanyard should be examined for loose strands, rips and deterioration.


In excessive heat, nylon becomes brittle and has a shriveled brownish appearance. Fibers will break when flexed and should not be used above 180 degrees Fahrenheit.

Change in color usually appears as a brownish smear or smudge. Transverse cracks appear when belt is bent over tight. This causes a loss of elasticity in the belt.

Ultraviolet Rays
Do not store webbing and rope lanyards in direct sunlight, because ultraviolet rays can reduce the strength of some material.

Molten Metal or Flame
Webbing and rope strands may be fused together by molten metal or flame. Watch for hard, shiny spots or a hard and brittle feel. Webbing will not support combustion, nylon will.

Paint and Solvents
Paint will penetrate and dry, restricting movements of fibers. Drying agents and solvents in some paints will appear as chemical damage.


Basic care for fall protection safety equipment will prolong and endure the life of the equipment and contribute toward the performance of its vital safety function. Proper storage and maintenance after use is as important as cleaning the equipment of dirt, corrosives or contaminants. The storage area should be clean, dry and free of exposure to fumes or corrosive elements.

Nylon and Polyester
Wipe off all surface dirt with a sponge dampened in plain water. Squeeze the sponge dry. Dip the sponge in a mild solution of water and commercial soap or detergent. Work up a thick lather with a vigorous back and forth motion. Then wipe the belt dry with a clean cloth. Hang freely to dry but away from excessive heat.

Harness, belts and other equipment should be dried thoroughly without exposure to heat, steam or long periods of sunlight.

For the complete OSHA Quick Takes document, click here.

read more 

Fall Protection Essentials: Follow-up from Roco

Thursday, February 09, 2012

Pat Furr reviews the importance of following OSHA safety standards for fall protection, and the steps an employer can take to ensure a safe work environment by providing high quality training. In the recent article by Mark Stromme, published in ISHN and on this blog, he addresses several myths regarding compliance with OSHA Fall Protection in the construction industry. Fact is, this wisdom applies to industry across the board.

OSHA Fall Protection Standards for Industry

It does not take long for an employer to realize that understanding the OSHA 29 CFR 1926 Subpart M standard is no quick and easy task. Fully adhering to this standard requires employers to complete a number of assessments, including the following:

    •    Evaluating areas that workers are exposed to fall hazards
    •    Developing work practices that eliminate or reduce the exposure to those fall hazards
    •    Selecting and installing suitable fall protection equipment
    •    Training employees on proper use of the equipment
    •    Inspecting and maintaining the equipment
    •    Developing rescue plans
    •    Re-evaluating the entire program on a regular basis

There’s no doubt, this can be a very daunting task – especially with all the other safety responsibilities we must deal with on a daily basis. But, I wanted to demonstrate that there is much more to providing a safe work environment for employees than handing them a harness and an energy absorbing lanyard.

Fall Protection Competent Person Essentials

One of the most important steps an employer can take towards developing an effective comprehensive fall protection program is to provide top quality training to their selected fall protection competent persons. By selecting the right person(s) for this position, the employer is assigning a degree of authority and expectations that the competent person will be very well versed in all there is to know about fall protection.

A common question we get from our former Competent Person students has to do with proper use of fall protection equipment. This is a critical function of the Competent Person, to provide the authorized persons training on the proper use of the selected fall protection equipment. As good as the equipment has become with modern materials, increased strength requirements, and functionality, we still are seeing equipment failures when subjected to forces they were not designed to see. If the authorized user is using the equipment outside the manufacturers’ instructions for use, that means the training has fallen short. No pun intended.

Roco's Fall Protection protocol challenges employers and current competent persons to ratchet up their diligence in providing high quality training to the folks that are counting on them. Employers must seek out truly effective Competent Person training programs and avoid programs that are more interested in selling product than delivering the instruction that the students need. Once the employer is satisfied that the competent person has the appropriate level of knowledge and experience, they complete written documentation attesting to such as described in the following article.

Now the ball is in the Competent Person’s court. With support from the employer, it is of paramount importance that the competent person continues educating themselves on everything “Fall Protection.”  Divide time between the OSHA and ANSI standards, new product information, fall protection “Walkabouts” at your facility, to include rescue provisions, and continuous monitoring of the work practices of the authorized persons.

There is always the need for continued fall protection training at every level. Make sure your team is properly trained and equipped to avoid injuries, fatalities, penalties or both. Check out Roco courses for Fall Protection/Competent Person by clicking here.

read more 

Five Fall Protection Myths to Counteract

Monday, January 30, 2012

Falls are the leading cause of worker fatalities. According to OSHA, each year more than 100 workers die and thousands are injured as a result of falls at construction sites. The fall protection standard, at 29 CFR 1926 Subpart M, details training and equipment requirements that employers must use to protect workers from falls.

This story is excerpted from an article by Mark Stromme, ISHN. He offers valuable suggestions for increasing safety for workers, and avoiding OSHA fines.

Employers need to:

    •    Select systems and equipment appropriate for the situation;
    •    Properly construct and install safety systems; and

    •    Train workers in the proper selection, use and maintenance of fall protection systems.

Train employees so they don’t fall for these five common myths and misconceptions about fall protection requirements in the construction industry. (Note: The citation amounts listed are related to the specific standard violated.)

Myth #1-“Residential construction has an exemption from the fall protection rules.”

This used to be true. However, in December 2010, OSHA rescinded the directive that allowed for that exception and as of September 15, 2011, all residential construction companies must comply with 1926.501(b)(13). The employer still has the option to develop and implement a fall protection plan that meets the requirements of paragraph (k) of 1926.502 if the employer can demonstrate that fall protection is infeasible or creates a greater hazard.

The new directive STD 03-00-002, Compliance Guidance for Residential Construction, rescinds STD 03-00-001, Interim Fall Protection Compliance Guidelines for Residential Construction, and provides that OSHA will be enforcing 1926.501(b)(13) for all residential construction work.

According to OSHA:

“Prior to the issuance of this new directive, STD 03-00-001 allowed employers engaged in certain residential construction activities to use specified alternative methods of fall protection (e.g., slide guards or safety monitor systems) rather than the conventional fall protection (guardrails, safety nets, or personal fall arrest systems) required by the residential construction fall protection standard (29 CFR 1926.501(b)(13)). Employers could use the alternative measures described in STD 03-00-001 without first proving that the use of conventional fall protection was infeasible or created a greater hazard and without a written fall protection plan. With the issuance of the new directive, all residential construction employers must comply with 29 CFR 1926.501(b)(13).”

When employees say there isn’t a need for fall protection during residential construction work, point out that OSHA says differently. As of September 15, 2011, OSHA compliance officers can enforce STD 03-00-002 for residential construction sites.

Myth #2-“I don’t need any fall protection; it’s only going to take me a couple minutes to install that equipment.”

Fall protection must be provided when employees are performing construction work on a walking/working surface with an unprotected side or edge that is six feet or more above a lower level. (Note: Construction work is “work for construction, alteration, and/or repair, including painting and decorating.”)
The length of time needed to perform that construction work has no bearing on the employer’s duty to provide fall protection. Be it one minute or one hour, OSHA requires fall protection per 1926.501(b)(1).

There is an exception: when employees are making an inspection, investigation or assessment of workplace conditions prior to the actual start of construction work or after all construction work has been completed, no fall protection is needed.

The following is from an OSHA Letter of Interpretation dated March 2, 2010:

“OSHA has set this exception because employees engaged in inspecting, investigating and assessing workplace conditions before the actual work begins or after work has been completed are exposed to fall hazards for very short durations, if at all, since they most likely would be able to accomplish their work without going near the danger zone... [R]equiring the installation of fall protection systems under such circumstances would expose the employee who installs those systems to falling hazards for a longer time than the person performing an inspection or similar work.”

When employees say they don’t need any fall protection — because the task is going to take them only a few minutes — tell them that in 2010 this misunderstanding cost employers $1,344,612 in OSHA citations.

Myth #3-“Training programs for fall protection aren’t really needed.”

OSHA is clear about requiring training for each employee who might be exposed to fall hazards. For example, employees may be familiar with specific types of fall protection and have had proper training. However, if a different type of fall protection is to be used, employees using it must be trained by a competent person qualified in this area of expertise.
This training must include the following:
  •     •    The nature of fall hazards in the work area;
  •     •    The correct procedures for erecting, maintaining, disassembling and inspecting the fall protection systems to be used;
  •     •    The use and operation of guardrail systems, personal fall arrest systems, safety net systems, warning line systems, safety monitoring systems, controlled access zones, and other protection to be
  •     •    The role of each employee in the safety monitoring system when this system is used;
  •     •    The limitations on the use of mechanical equipment during the performance of roofing work on low-sloped roofs;
  •     •    The correct procedures for the handling and storage of equipment and materials and the erection of overhead protection;
  •     •    The role of employees in fall protection plans; and
  •     •    The standards contained in Subpart M.
To prove this training was done, employers need to have a written certification of training that contains the name or other identity of the employee trained, the date(s) of the training, and the signature of the person who conducted the training or the signature of the employer.
If workers scoff and say they don’t need to be specifically trained in fall protection, tell them the OSHA regulations state otherwise. Failure to provide the required fall protection training in 1926.503(a)(1) resulted in $649,006 in OSHA citations in 2010.

Myth #4-“I’m doing roofing on a low-sloped roof so I don’t need any fall protection.”

OSHA requires (per 1926.5010(b)(10)) each employee engaged in roofing activities on low-sloped roofs, with unprotected sides and edges six feet or more above lower levels be protected from falling by:

    •    Guardrail systems,
    •    Safety net systems, or
    •    Personal fall arrest systems

Other options include a combination of:

    •    Warning line system and guardrail system,
    •    Warning line system and safety net system,
    •    Warning line system and personal fall arrest system, or
    •    Warning line system and safety monitoring system.

On roofs 50 feet or less in width, the use of a safety monitoring system alone (i.e., without the warning line system) is permitted.
There is an exception. When the employer is doing leading edge work, precast concrete erection work or residential construction work, and can demonstrate that it is infeasible or creates a greater hazard to use these systems, they must develop and implement a fall protection plan that meets the requirements of 1926.502(k).

Contrary to what workers may think, OSHA does require fall protection on low-sloped roofs. In 2010 they issued $909,442 in citations to enforce that requirement.

Myth #5-“A warning line is all I need for fall protection when working on a steep roof.”

According to 1926.501(b)(11), a warning line is not allowed as a form of fall protection when working on a steeply pitched roof. OSHA requires that each employee on a steep roof with unprotected sides and edges six feet or more above lower levels be protected from falling by guardrail systems with toeboards, safety net systems or personal fall arrest systems.

Training employees on these requirements would have saved employers $447,828 in citations in 2010.

Counteract these myths... Training employees to avoid these five fall protection myths and misconceptions can prevent injuries and fatalities and save your company money.
read more 

Previous Next
1 2 3 4 5

RescueTalk ( has been created as a free resource for sharing insightful information, news, views and commentary for our students and others who are interested in technical rope rescue. Therefore, we make no representations as to accuracy, completeness, or suitability of any information and are not liable for any errors, omissions, or delays in this information or any losses, injuries, or damages arising from its display or use. All information is provided on an as-is basis. Users and readers are 100% responsible for their own actions in every situation. Information presented on this website in no way replaces proper training!