Roco Rescue

RescueTalk

WE DO RESCUE

Do’s & Don’ts for CS Attendants (Hole Watch)

Thursday, October 19, 2017

There continues to be a misconception that a confined space attendant (or “hole watch”) is a menial task to be assigned to the greenest, most inexperienced personnel on the job. That’s a dangerous assumption, and it has been a contributing factor in many confined space fatalities.

In fact, the attendant or hole watch should have a solid understanding of the permit space to be entered. This includes knowing the particulars of any known or potential hazards as well as other pertinent knowledge and skill sets. If you are assigned this crucial role, I hope you understand that the entrant(s) are relying on you. Your performance may have a significant bearing on the outcome, both good and bad.

Do you know everything you need to know in order to perform your duties as a confined space attendant? Don’t assume that you will learn everything you need to know after a two- or three-minute pre-job briefing.

Being an attendant or "hole watch" is a critically important role and failure to properly perform these duties has led to multiple fatalities – both for the entrants and the attendants themselves.

Do understand the known and potential hazards of the confined space. Do take the time to review the SDS (MSDS) for any and all materials or gasses that may be encountered. Do learn what the signs and symptoms of exposure may be. Then, if you detect any of them in the entrant’s behavior or appearance, you can order immediate evacuation.

Don’t gloss over this valuable and readily accessible information only to wonder what caused the entrant(s) to lose consciousness. The SDS (MSDS) provides information on route of exposure; and very importantly, the signs and symptoms of exposure. Don’t miss the opportunity to save the day, and perhaps a life, by learning these early warning signs. This allows evacuation of the space before entrants are no longer able to do so on their own.

Do learn the proper operation of any testing equipment, such as atmospheric monitors. It is also important to understand the limitations of this equipment as well.

Do keep track of all authorized entrants in the space. For entries with multiple entrants, don’t rely on your memory alone. Do use some sort of log or entry roster as a reliable means to accurately identify who is in the space.

Do make sure that you have a reliable means to communicate with the entrants. Do test that means of communication at the very limits of the space to ensure it works. Don’t wait until there is an incident to learn that you cannot alert the entrants, or you cannot hear that their status has changed. If you haven’t heard from the entrants in a while, it can be tempting to go into the space to check on them. This very situation has led to many fatalities in which the attendant was overcome by the same hazard as the authorized entrant(s). At that point, there is no longer anyone available to call for help.

Don’t accept the job assignment until you have been briefed by the entry supervisor on all the planned activities both inside and outside the space. Do remember that oftentimes activities outside the space can create a hazard for the entrants inside the space. Carbon monoxide and spills of hazardous materials are just a couple of examples.

Don’t allow any activities to take place inside or outside the space that are prohibited and are not consistent with the conditions stated on the entry permit, especially if they may create a hazard to the entrants. If those activities were not coordinated and told to you by the entry supervisor, do evacuate the space and call the entry supervisor for guidance.

Don’t leave the space or perform other duties that may interfere with your primary duty of monitoring and protecting the entrants.

Do remain diligent, remember that you are the critical link between the entrants and the rescue service.

Do know how to contact rescue services should they be needed. Don’t wait until it is too late to call for help. Do summons rescue as soon as you determine that the entrants may need assistance escaping from the space. Just remember, you can’t turn back the clock and buy back the time that entrants may have needed to survive. It’s a whole lot easier to turn around the rescue service if it is not needed.

Don’t allow unauthorized persons to approach or enter the permit space. If you are unable to warn them away, do order the evacuation of the authorized entrants. Do immediately inform the entry supervisor of the situation.

Do perform non-entry rescue (retrieval) when needed and if authorized by your employer. Do perform a thorough pre-entry inspection on the retrieval rescue equipment. Do make sure it is appropriate for the type of rescue that may be needed. Do learn and practice the proper operation of the retrieval equipment. Don’t wait until there is an emergency to try and figure it out. Don’t attempt entry rescue unless you are authorized, trained and equipped to do so. Don’t attempt entry rescue until you are relieved by another authorized attendant. Remember, you cannot leave the space unattended!

Don’t take your responsibilities lightly. Do ask the right questions of the entry supervisor and your authorized entrants. Do realize that they are all counting on you. Do ask to be briefed by the entry supervisor regarding any coordination that has been made with other work groups in the area. Do remember that many attendants have perished attempting heroic but ill-advised and unauthorized rescue attempts.

Do remember that your authorized entrants are relying on you. Do take the initiative to learn everything you need to know and how to operate any equipment in support of your entrants. As the hole watch, you are the critical link that can make or break a successful entry operation.

Click picture to download Safety Requirements for Confined Space Attendants.

 Written by Pat Furr, Safety Officer & VPP Coordinator for Roco Rescue, Inc.

read more 

NDSC to Host Roco Rescue Training

Tuesday, October 17, 2017

Join us in Bismarck, ND, for Roco’s Industrial I/II course at the Safety Council’s new training facility. The NDSC has an indoor confined space rescue prop designed with input from Roco Rescue. Click here (or the picture) to download the flyer information.

This course is for industrial and municipal rescuers who handle confined space and high angle rescues in industrial environments. Course dates are November 13-17, 2017.

Call the NDSC at 800-932-8890 for more information; or contact Roco at 800-647-7626. We will also be conducting additional Roco courses at the NDSC in 2018.

read more 

Planning for Successful Confined Space Rescue

Thursday, September 21, 2017

By Dennis O'Connell, Roco Director of Training & Chief Instructor

I am often asked by plant managers or rescue team supervisors about getting their team on the right track as far as training and competency is concerned. Here are a few tips for doing just that…

First of all, I always recommend that they choose a single provider for their confined space and high angle rescue training. Using multiple training providers (even if they are similar) adds to the confusion of team members as to what techniques and equipment are being used – especially during a real rescue!

I then suggest that the team’s training records be reviewed in order to determine what level of training has been completed. I also strongly recommend getting everyone to the same level; especially if your facility is what I refer to as an “island unto itself.” In other words, do you have nearby facilities or other local agencies who can offer additional manpower, equipment, etc. in an emergency – or, are you fairly isolated?

Same Page, Same Language
If your facility is somewhat isolated, getting all your rescue team members on the same page, talking the same language, and at the same level of training is extremely important. You may have some experienced rescuers who have completed a variety of courses from different providers and are trained to different levels. Is this previous training properly documented should you be asked about it and to what levels? Having everyone on the same level – with the same basics under their belt – is key to performing a timely and successful rescue
And, do you have a particular goal or level you want your team to strive for, achieve, and maintain? Determining your overall goal for the team is significant in planning for and achieving results. Haphazard training “just for the sake of training” is not necessarily a good thing, and it tends to generate complacency among team members. Besides the obvious, your team “needs to be able to perform a rescue should the need arise.”

Is It Documented?
Take a look at how the training was conducted, documented and what standards were met, if any. And, if you have permit spaces or personnel working at height, I’m assuming that OSHA compliance is a given, but what about meeting requirements of the National Fire Protection Association (NFPA) for rescuers; namely, NFPA 1006 and 1670.

If there is an incident and OSHA or some other regulatory organization were to investigate, how would you provide the documentation that your team is capable of doing what is required of them? Remember, if it can’t be documented, it doesn’t exist!
Using NFPA 1670 (“team” standards) and NFPA 1006 (“individual rescuer” standards) as a basis for the team’s training level will help to provide the needed documentation and add to the credibility of your team’s capabilities. Ideally, all your team members should be certified to the Confined Space Rescue Technician level (NFPA 1006) along with the documentation to back it up.

Because NFPA’s Confined Space Rescue Technician includes confined space and high angle (elevated) rope techniques, I don’t necessary suggest that industrial clients be required to achieve “Rope Rescue Technician.” The added skills of Rope Rescue Technician include less-seldom-used techniques in industrial rescue such as rope ascension and traverse. Do make sure, however, that the course you choose for Confined Space Rescue Technician incorporates some (not all) of the high angle skills you would need to perform elevated rescue at your site.

A Mix of Confined Space and Rope Rescue

If you have a variety of experience and training levels among your team members, it’s important to get them consistently trained and all trained to the same level. Of course, I would recommend Roco’s Fast Track 80™ course, which includes a two-year certification. This course was designed to meet the needs of industrial facilities with a mix between “confined space” and “rope” technician skills needed. The class is geared for confined space rescue with some of the additional rope technician skills needed for elevated or high angle rescue. The class efficiently gets the rescuer to the Confined Space Rescue Technician level in only 80 hours using both performance-based and written testing.

Of course, the next challenge is getting the entire team trained to the same level. It’s not going to be easy to get an entire team released for training all at once – thus compromising the availability of rescue personnel onsite should an emergency arise. Therefore, you may have to run a couple of classes to get everyone certified – or send some of your team (or new team members) to an open-enrollment course.

Testing to the NFPA 1006 Professional Qualifications standard is conducted on the last day of the Fast Track 80™ class. Note: If some of your personnel have already completed this class, they can join the class for the last four days in order to be recertified. This will allow the new members and more experienced team members to work together in realistic practice scenarios. It will help get everyone on the same page as far as techniques plus give the experienced personnel a 3-day refresher and practice time before re-certification testing.

Training Cycle for Compliance
Once all team members are trained to the same level, I recommend going to a two-year rotation. For example, once everyone is certified, the next year would be a Roco Team Performance Evaluation (TPE) where we come for two-to-three days and run teamed-based evaluations using multiple rescue scenarios. Each scenario is critiqued by evaluators to adjust any problems found along the way. The TPE would be followed by a written report to document the scenarios conducted as well as discrepancies found and corrected. The following year would be Re-certification to NFPA 1006 (three-to-four-day session) that includes Individual Performance Evaluations (IPE) where team members would refresh personal skills as well as run several scenarios before testing for re-certification to Confined Space Technician level.
This rotation will help with OSHA compliance by meeting the minimum annual practice requirements as well as by providing a performance evaluation of rescue services as stated in Note to paragraph (k)(1) from 1910.146: “Non-mandatory Appendix F contains examples of criteria which employers can use in evaluating prospective rescuers as required by paragraph (k)(1) of this section.”
In addition, both OSHA 1910.146 and 1926.1211 require timely and capable rescue services for permit spaces. They also require minimum annual rescue practice in the applicable types of confined spaces as well as proficiency for team members. This cycle of training works well in documenting that you have met these minimum requirements while also meeting the requirements of NFPA.

The TPE supporting documentation also provides a “snapshot” of where your team and its individual rescuers stand in terms of competency. This information can then be used as a tool to design internal drills that correct any discrepancies while getting the most from your “all too limited” practice time.

I hope these recommendations are helpful in planning for the success of your rescue team – especially when it’s all on the line during an emergency situation. If you have any questions, don’t hesitate to call me at 800-647-7626 or send an email to info@rocorescue.com.
read more 

Keeping Pace with Fall Protection

Tuesday, August 08, 2017

We all know that initial safety training is a crucial element of our programs that aim to keep our employees protected from harm at work. For any and all hazards (or potential hazards} to which we expose our workers, we must ensure they understand the nature of the hazards and how to protect themselves.

Initial safety training and proper safety equipment, combined with good old-fashioned experience, goes a long way in ensuring a safe work environment. But, at times, we must provide re-training for our employees – and there are many reasons for this.
For example, if our employees demonstrate a lack of knowledge or acceptable performance in regards to any particular hazard, we must provide re-training. If the process or equipment changes, we must provide re-training. If new safety equipment (includes systems as well) is brought into the program, we must re-train our employees on its proper use. And, finally, if there are changes to safety legislation or best-known practices, we need to re-train.

It seems that every week a new piece of fall protection equipment is brought to market – and for the most part, these emerging technologies make work-at-height safer than ever before. Additionally, these newer fall protection items tend to be lighter, more comfortable, easier to operate, and can even perform multiple safety functions. This is all great news, but not every item/system is right for the varied situations encountered at our workplaces. But when we do introduce a new piece of fall protection equipment to our workforce, it nearly universally calls for some degree of re-training. The manufacturer’s instructions for use may be a great starting point to satisfy this training, but it is always a good idea to provide some degree of formal training on the equipment, and then document that training.

The extent of this re-training is dependent on the complexity of the new equipment and the authorized person’s general knowledge base. Sometimes the user manual does not cover all the points that the re-training should convey. For example, harness-mounted self-retracting lifelines are becoming more and more prevalent in the work-at-height environment. In addition to the standard training for pre-use and periodic inspections, proper mounting, operating capabilities and limitations, at least one other point of training seems to be required. The worker cannot walk too quickly away from their anchorage lest they engage the arresting mechanism which abruptly stops the worker in their tracks. This may at times create a new hazard by jerking the worker off balance or causing them to drop objects they may have been carrying. I have even heard some tales of individuals suffering minor injuries due to the sudden stop. So, even though you may not find this point of training in the user’s manual, it comes with experience and should be included in the re-training for this type of new equipment.

Another reason to provide re-training for fall protection has to do with an observed deficiency in an authorized person’s knowledge or performance regarding fall protection. Now this can become a little tricky to find the root cause of the deficiency. Is it truly a lack of knowledge on the authorized person’s part, or is it a disregard for required procedures? Sometimes it's a mix of both. No matter the primary cause of the deficiency, if that authorized person is to remain on that job, it is incumbent on the employer to provide proper re-training. And I will say it again, document that re-training!

We have recently had a significant legislative change to the general industry standard for fall protection. On Nov. 18, 2016, OSHA 1910 Subpart D “Walking-Working Surfaces” was published and became effective on Jan 18, 2017. The major changes to this final rule have to do with physical changes to existing and future structures regarding the phase-in of ladder safety systems,

• Eliminating the outdated general industry requirements for scaffolds and adopting the construction industry’s scaffold standards,• Guidance on the use of rope descent systems and qualified climbers, as well as some other changes. But the most significant changes that will drive training and re-training requirements is the added flexibility of using personal fall protection systems for authorized persons. These personal fall protection systems include fall restraint, work positioning, and personal fall arrest systems (PFAS). OSHA has eliminated the mandate to use guardrail systems as the primary fall protection method and now allows the general industry employer to determine the fall protection method that they feel is best suited for the nature of the work at height. And this now includes personal fall protection which was not addressed prior.

For general industry employers, who prior to the new Subpart D did not allow their employees to use personal fall protection systems other than in accordance with 1910.66, the option to do so now will be deemed compliant. And, of course, this will require initial training and re-training for the use of personal fall protection equipment and systems. Additionally, employers that introduce the authorized use of work positioning and personal fall arrest systems to their workplace will also have to provide training on rescue of these workers if they are relying on an in-house rescue capability.

In the years I have been involved with safety and rescue training, one subtlety that I observe is this:

Oftentimes an employer or their employees do not realize they have a training deficiency until after they've gone through the training.
This is certainly true when it comes to rescue training. At the conclusion of nearly every rescue class I teach, at least one of the students says they never realized what all was involved in rescue and what the limitations of certain rescue systems were. And this is consistent with my interviews and reviews of rescue programs when I am asked to perform needs assessments at various facilities. Unless you have a background in technical rescue, it is very difficult to visualize the systems, skills, and equipment required to safely access and rescue a fallen/suspended victim.

Both OSHA and ANSI require employers to provide "prompt rescue" of employees they authorize to work at height while using personal fall arrest systems. OSHA has published a Safety and Health Information Bulletin recognizing suspension trauma as a workplace hazard affecting workers that use personal fall arrest systems. Many employers address rescue of fallen/suspended workers in their fall protection programs, but stop at merely developing written policies that may fall well short of the requirements needed at the time of an incident. This falls back to my earlier point that an employer that has a limited background and understanding of the complexities of performing rope rescue, especially if it requires technical skills beyond the simplest rescue, may not understand what the true requirements are for their facility. Sort of like that general saying last year that “We don’t know what we don’t know.” So, training for rescue is a subcategory of fall protection training that does not have as much easily accessed guidance and resources to rely on as a guide.

Quality training will include several of the points that I have detailed so far. The training will be pretty specific to the job with very little time spent on irrelevant material. The training will be of the type that best transfers the information in either a vocational or academic manner. The training will close the gaps that have been identified and arm the employer and the students with a better understanding of what is truly required to perform the job, which is especially true for rescue. But finally, the training should be delivered in such a manner that it captures the students’ interest. The best outcome of training, the classes where the student finishes with the highest level of retention, understanding and performance, are the classes that compel the students to engage in the learning.

I think it is a safe assumption to say that we have all sat through classes wondering when and hoping for the class to end. Looking at our watch is one thing, but when we are tapping it to see if it is even still working is a really bad sign. I am not suggesting that educators have to provide entertainment, but there is a demonstrated positive difference in classes delivered by an engaging trainer as compared to a very dull, monotonous trainer.

In addition to seeking an engaging trainer, it is important for the trainee to take some ownership in the learning process as well. This is where the adult learner has an advantage over younger learners. We as adults generally understand that the training will result in a better understanding of the job requirements and in many cases is a factor in career progression.

I encourage you to seek out the training that your employees need. Or, as an employee yourself, seek out quality, applicable training. Review the course syllabi and determine if it will close those knowledge and skills gaps that you have identified. Always back up those fancy sales brochures by reaching out to others to get their opinion on their experiences with the training in the past. Also, remember to consider re-training as needed and always document. These things are important for the overall quality and credibility of your safety training programs.

Article by Pat Furr, Safety Officer & VPP Coordinator for Roco Rescue, Inc. 

read more 

Roco CASEVAC II for Tactical Team Members

Wednesday, May 10, 2017

Crank It Up a Notch with Roco’s CASEVAC II Training

It has been an honor for us to expand our support of our nation’s heroes to the greater SOCOM community. When we developed the TCCC CASEVAC Extraction kits and subsequent training, our goal was to assist operators around the world in saving the lives of their buddies in need. While SOCOM did a commendable job in bridging a broad capabilities gap with the CASEVAC Set, a training gap still exists for more advanced extraction training.

Roco trained over 700 operators within all four branches of our military during the time we offered NET courses at the Roco Training Center. Now that this training and equipment has been used in the field for a few years, we would like to propose the following questions:

  • When was the last time you practiced the skills learned in the NET course?

    Or, broke out the Micro RIES™ and built a haul system?

    Or, the last time you lifted a vehicle or debris using the lift bags?

    What about the skills that the NET course didn’t cover?

Now is the time to take it to the next level with Roco’s CASEVAC Extraction Level II. This course builds upon the foundation of the skills offered in the NET course and gives operators a few more ways to get the job done.
The beauty of these “rescue” skills is that most of them can be applied to everyday missions outside of the context of rescue. If you can haul Mongo onto a roof while he’s packaged in a Sked litter, then you can definitely haul up some equipment. If you can rappel into a well to save a fallen teammate and ascend back out, then you can access and bail out of OPs more quickly, safely, and efficiently. Lifting and extrication tools and techniques can be applied to SSE as well as rescue.

We’d like to invite you to help drive the curriculum of this course. Roco will be holding two (2) pilot courses in order to validate the curriculum we’ve developed. A detailed description is located at our Tactical Courses page. Your feedback will help determine which skills are vital to include.
Not currently under SOCOM’s umbrella? No worries. While this course was designed with the CASEVAC Set of equipment in mind, the principles apply universally.
Since equipment changes, we focus on the principles. In this course, we start from the ground up, refreshing things covered in NET, and using equipment from the CASEVAC Set as well as gear that is used by other SOF units around the world. By using several variations of equipment, you’ll gain higher proficiency and be able to use your team’s equipment more effectively, whether it’s the CASEVAC Set or not.
read more 

The Clock's Ticking on Timely Response

Tuesday, April 25, 2017

By Dennis O'Connell, Roco Director of Training & Chief Instructor

As Director of Training, I get many questions about rescue techniques and regulations from our students and readers. In the past month alone, I have received three inquiries about "timely response for rescue teams" regarding permit required confined spaces (PRCS). So, let's break it down and try to clear the air on this subject. For clarification, we will refer to the General Industry Standard 1910.146; the Construction Standard 1926-1211; and the Respiratory Standard 1910.134.

In 1910.146, OSHA provides guidance on timely response in Subpart K (Rescue and Emergency Services) and again in Non-Mandatory Appendix F (Rescue Team or Rescue Services Evaluation Criteria). Subpart (k)(1)(i) states: "Evaluate a prospective rescuer's ability to respond to a rescue summons in a timely manner, considering the hazard(s) identified."

This one sentence actually says volumes about response times. The first question to be answered is, "Can the rescue service respond in a timely manner?" It then gives a hint as to what a timely manner should be based on. The second part of the sentence refers to "considering the hazard(s) identified." What this so eloquently says is the response time must be determined based on the possible hazard(s). This means the "known and potential hazard(s)" must be identified for each space to be entered. The hazards discovered -- based on severity, type, how rapidly the hazard could become IDLH or injure the worker, how quickly the need to treat the injury, or how quickly hazards might interfere with the ability to escape the space unaided -- would then be used to determine an acceptable response time. This is why OSHA only alludes to response times and does not set hard and fast times to follow -- it depends on the hazards of that particular space.

Another aspect we need to consider is that "response time" begins when the call for help goes out, not once the team is on scene. It ends when the team is set-up and ready to perform the rescue. So, how long will it take your team to be notified, respond and set-up is a big portion of that acceptable response time calculation. For example, a dedicated onsite fire/rescue team would be able to respond faster than workers who have other responsibilities and need to meet at the firehouse before responding. Or, more quickly than an outside service, such as a municipal department, that would have to respond to the facility, get through the gate, and be led to the scene.

In the note to paragraph (k)(1)(i), it adds: What will be considered timely will vary according to the specific hazards involved in each entry. For example, OSHA 1910.134, Respiratory Protection, requires that employers provide a standby person or persons capable of immediate action to rescue employee(s) wearing respiratory protection while in work areas defined as IDLH atmospheres.

Here we see OSHA better defining an acceptable response time for IDLH atmospheres -- i.e., immediate action! However, it's important to note this doesn't just refer to low O2...depending on the type of contaminant in the atmosphere, other respiratory equipment such as half- or full-face APRs could be used. It may include a dusty environment where the entrant wears a mask and visibility is less than 5 feet. Technically, that would be considered an IDLH environment. Many people get hung up on the use of SAR/SCBA as the trigger for a standby team, and that is just not the case.

For an IDLH atmosphere where respiratory protection is needed, an adequate number of persons (rescuers) is required to perform a rescue from the type of space involved - ready, trained, equipped and standing by at the space -- ready to take immediate action should an emergency occur. So, when dealing with possible IDLH atmospheres, we are looking at "hands-on" the patient in 3-4 minutes as possibly being an appropriate response time. Basically, this is about how long an entrant can survive without air. The only way to safely make rescue entry in that time frame is to have rescuers standing by, suited up and ready to go!

So, if dealing with an IDLH atmosphere, we revert back to 1910.134. Many people think that that is the only time we need a team standing by ready to take immediate action. I pose the question, "If the hazard is a liquid (engulfment hazard), what would be a reasonable response time?" If the victim is Tarzan or Johnny Weissmuller (okay, Michael Phelps, for you younger people), we may have a longer stay-afloat time. But if a non-swimmer, or in an aerated solution or other engulfment hazard, immediate action may be their only chance of survival! And, what about radiation (time, distance, shielding)? I am sure you can think of a few more possibilities.

And, while OSHA referred to an IDLH atmosphere in this example, it's important to consider other IDLH hazards as well. Here's where we note that the definition of IDLH in the Respiratory Standard (1910.134) differs slightly in Permit-Required Confined Spaces (1910.146). The Respiratory standard specifically refers to an IDLH "atmosphere" while the PRCS standard states the following: Immediately dangerous to life or health (IDLH) means any condition that poses an immediate or delayed threat to life or that would cause irreversible adverse health effects or that would interfere with an individual's ability to escape unaided from a permit space. This includes more than simply atmospheric hazards! 

OSHA NOTE: Some materials -- hydrogen fluoride gas and cadmium vapor, for example -- may produce immediate transient effects that, even if severe, may pass without medical attention, but are followed by sudden, possibly fatal collapse 12-72 hours after exposure. The victim feels "normal" until collapse. Such materials in hazardous quantities are considered to be "immediately" dangerous to life or health.

In Non-Mandatory Appendix F (I hate that non-mandatory language), OSHA gives guidance on evaluating response times under Section A - Initial Evaluation. What are the needs of the employer with regard to response time (time for the rescue service to receive notification, arrive at the scene, and set up and be ready for entry)? For example, if entry is to be made into an IDLH atmosphere, or into a space that can quickly develop into an IDLH atmosphere (if ventilation fails or for other reasons), the rescue team or service would need to be standing by at the permit space. On the other hand, if the danger to entrants is restricted to mechanical hazards that would cause injuries (e.g., broken bones, abrasions) a response time of 10 or 15 minutes might be adequate.

Not a bad paragraph for a non-mandatory section of the standard! Here they explain what they are looking for in regards to response times. They even take the OSHA 1910.134 IDLH atmosphere requirement for a team standing by at the space a little further by adding "or into a space that can quickly develop into an IDLH atmosphere." It also states if the hazard is mechanical in nature, 10-15 minutes might be adequate. That’s right, "might" not will be, but might be. Again, it depends on the hazard.

Paragraphs 2-7 in Appendix F goes on to describe other conditions that should be considered when determining response times such as traffic, team location, onsite vs. offsite teams, communications, etc. If you have not done so, I highly recommend that you review the not-so-Non-Mandatory Appendix F. It is also important to note that while it's not mandatory to follow the exact methods described in Appendix F, meeting the requirements are! OSHA also uses the word "should" in Appendix F, not following the OSHA recommendations could certainly lead to some hard questions post incident.

OSHA 1926 Subpart AA Confined Spaces in Construction closely mirrors 1910.146. In this relatively new standard, they simplified the definition of timely response and omitted Non-Mandatory Appendix F, which helps to eliminate the confusion of the "non-mandatory" language, and included the requirements right in the standard, which is good. However, 1910.146 really gives you a better idea of what timely would be for different situations through the notes in Section (k) and Appendix F.

Section 1926.1211 of the Construction Standard for Rescue and Emergency Services (a)(1) states: Evaluate a prospective rescuer’s ability to respond to a rescue summons in a timely manner, considering the hazard(s) identified. This is immediately followed by: Note to paragraph 1926.1211(a)(1). What will be considered timely will vary according to the specific hazards involved in each entry. For example, OSHA1926.103, Respiratory Protection (for construction) requires that employers provide a standby person or persons capable of immediate action to rescue employee(s) wearing respiratory protection while in work areas defined as IDLH atmospheres.

In closing, these regulations are driving you in the same direction for identifying what a timely response would be...THERE IS NO SET TIME FRAME! Each space must be evaluated based on potential hazards and how quickly rescue would need to take place. I hope this will make you take a closer look at "how and what" you consider a timely response. An employer's PRCS program must identify and evaluate the rescue resources to be used. It is then up to the entry supervisor to make sure the identified rescue service is available to respond in a timely manner, which can literally mean life or death for the entrants.

read more 

Roco Competent Person Equipment Inspection

Wednesday, February 15, 2017

Does a competent person inspect your rescue equipment each year?

If not, you may want to consider having an independent third party perform the inspection for you. This service is offered by Roco as a stand-alone service, or it can be added to your next private training session. 

Functional Ops Check

The service includes a “sight and touch” functional inspection of hardware, nylon products (including rope, webbing, and anchoring components), harnesses, and accessory equipment (including litters and stretchers) utilized in confined space/high angle applications. The inspection will be conducted in accordance with manufacturer’s specifications and will satisfy the requirement for an annual2 inspection by a competent person.
Note: Equipment recommendations will NOT be provided by inspection personnel unless requested to do so.

Service Inspection Benefits include:

• Certified personnel to inspect equipment to manufacturer's standards.
• Inspection documentation from an independent third party.
• Frees your personnel from the responsibility of equipment inspections.

A full report of findings will be provided to include accessibility of equipment to responders and any other recommendations to improve overall team performance. It will include other pertinent information such as the manufacturer, product number, and serial/lot number (where applicable), date of manufacture, and in-service date (when available). It will also include the results of pass/fail testing for both visual and functional inspection. All equipment deemed unsuitable for use will be tagged for removal from service.

Regardless of the stated service life, the condition of equipment – as determined through inspection by a qualified party – is a key factor in determining whether or not a piece of equipment is fit for service.

Although the definition of “equipment lifespan” is very broad depending on the manufacturer, each provides specific instructions on proper inspection of equipment and detailed explanations on when to retire the service item. Several general identifiers that pertain to all equipment are shown below.

Reasons for Equipment Retirement include:

• Item fails to pass any pre/post use or competent person inspection.
• Item has been subjected to a major fall or load.
• Item is constructed of plastic or textile material and is older than 10 years.
• You cannot determine the complete full-use history of item.
• You are not certain or have lost confidence in the equipment.

As a reminder, it is very important to keep the manufacturer’s instructions when purchasing new equipment. This is vital to identifying and keeping track of the manufacture date as well as other important information. For example, if the manufacture date of equipment, such as life safety rope and harnesses, cannot be identified; it can pose extreme liability for agencies or facilities whose teams may potentially be operating with equipment that has passed its service life. It could also create a compromise in the safe operation of the equipment.

A 10-year service life for nylon/polyester products is set according to ASTM F1740-96 (American Society for Testing and Materials).

Inspect Rescue Equipment Every Time It’s Used

All team members should be qualified and knowledgeable enough to perform pre- and post-use inspections of equipment. It is crucial that all members document each use of equipment, denote any deficiencies, and report to the proper person. One person should be designated to perform the competent person annual inspection. This person should have complete knowledge of the equipment and inspection procedures as well as the authority to keep or remove equipment from service as they see fit. If team members are unable to fill this role, a qualified third party with applicable manufacturer certifications in competent person inspection should be utilized to assist in determining the condition and estimated service life of rescue equipment.

Download Roco's Quick Checklist for your convenience. →

Rescue team members are encouraged to attend this inspection where they will receive information on proper pre- and post-use inspections for their equipment. Guidance can be also offered in areas of equipment care, inspection, record-keeping, and proper storage. Again, equipment recommendations will not be addressed unless specifically asked to do so – this is only an inspection of the equipment you currently have on site.

Remember, with rescue gear, lives are literally “on the line,” – if in doubt, throw it out!

To schedule your Roco Competent Person Inspection, or add it to your current training dates, call us at 800-647-7626 or email info@rocorescue.com. Roco offers this service at no charge for current customers or for a very nominal fee for non-customers.1


1 Current customers receive a one-day equipment inspection at no charge. Travel expenses apply for out-of-town customers.
2 References include: 1926.502 Appendix C; ANSI Z359.2 Section 5.5.2 Inspections; ASTM Rope Inspection Guide; NFPA 1983 Section 5.2; ANSI Z359.11 Annex A (harnesses); and ANSI Z359.4 Section 6.1.

NOTICE: The client remains responsible for ensuring that all guidelines and requirements for maintaining and, where indicated, removal of equipment from service, are followed. This includes removing equipment from service anytime there is a situation or incident that occurs during handling, training, or rescue, that might have caused damage or otherwise compromised the integrity of the equipment, particularly where internal damage that is not visible might be present (e.g. equipment dropped from height, exposure of nylon products to chemicals or other potentially degrading substances, etc.). Client will be required to complete a certification that between Roco inspections, the equipment was properly stored, was available only to personnel trained to use the equipment properly, and that any equipment that was exposed to any condition or occurrence that could have resulted in hidden damage has been removed from service. A company representative, preferably someone from the rescue team, must be present during the inspection process.

read more 

Roco Rescue Training in North Dakota

Monday, January 23, 2017

Roco is excited to be conducting several Rescue & Fall Protection Workshops at the 44th Annual Safety Conference next month in Bismarck, ND. This will kick off our working relationship with the ND Safety Council to provide safe, effective confined space rescue training for their membership. 

What's more, the North Dakota Safety Council (NDSC) is currently constructing a new safety campus in Bismarck that will house a 5,000 square foot hands-on training lab. Roco, as a training partner, will provide high-level technical rescue courses at this new facility on a year-round basis.

For the conference on February 20-23, we will be conducting a number of hands-on rescue workshops and presentations to be presented by Roco Lead Instructors Dennis O’Connell, Pat Furr, Brad Warr, Eddie Chapa and Josh Hill. Sessions include:

  • Intro to Competent Person Requirements for Fall Protection
    2/20 9am-6pm (classroom w/demo)
  • Confined Space Entrant, Attendant, and Supervisor Requirements
    2/20 9am-6pm (classroom w/demos) 
  • Tripod Operations
    2/21 11am-5pm (hands-on training) 
  • So You’ve Fallen, Now What?
    2/22 10am-11:30am (classroom)
  • Dial 911 for Confined Space Rescue
    2/22 1:30pm-2:30pm (classroom w/demos)
  • Confined Space and Rope Rescue...
    2/22 1:30pm-5pm (hands-on training) 
  • Trench Collapse Rescue Considerations
    2/22 2:45pm-3:45pm (classroom) 
  • Fallen/Suspended Worker Rescue
    2/23 8am-11:15am (classroom w/demos) 
  • We look forward to meeting you at Roco booths (#202 & #203) or in these training sessions. For more info, click to NDSC’s 44th Annual Safety & Health Conference. Don't forget to register online at www.ndsc.org for these training sessions.
read more 

Why Knot?

Thursday, December 01, 2016

By Pat Furr, Safety Officer & VPP Coordinator for Roco Rescue, Inc.

As rescuers, we all have our favorite knots and our favorite ways of tying them. Depending on the application, there may be several knots to choose from that will perform slightly differently in terms of efficiency or knot strength. You can go online and order any number of books ranging from a couple of pages thick to 2’ thick with hundreds of knots in it. The trick is to decide what applications you will need to perform with your ropes and knots. If you don’t need to shorten a rope, then you don’t need to know how to tie a sheepshank. Or, if you use manufactured harnesses, then a tied Swiss Seat is not a needed skill in your inventory.


For the most part, we can break applications into 6 categories for rescue purposes: 

1) Knots that form a permanent loop in the end of a rope (Ex. Figure-8 on-a-bight)
2) Knots to tie around objects (Ex. Bowline)
3) Knots to join ropes together (Ex. Square Knot)
4) Knots tied in the middle of ropes (Ex. Butterfly)
5) Hitches binding and adjustable (Ex. Prusik Wrap or Clove)
6) Utility knots (Ex. Daisy Chain)

Whenever we tie a knot in a line we lose some of the efficiency in the rope or webbing we are using. Generally, the more acute the first bend in the knot, the more efficiency is lost.

Other factors such as angle deflection, direction of pull, and rope construction all have effects on a knot’s efficiency. Then, there’s the type of load the knot will see (two directions or three directions). The direction and critical angle applied forces may change the efficiency rating of a knot greatly. In rescue, we try to use knots with fairly small efficiency losses, generally between 18-37%.

There are some other considerations beyond knot strength when choosing which knot to use for any particular application.

Ease of Tying

In addition to knot efficiency (strength), we also must think about many other things such as ease of tying especially in those hard to access places where you wish you had more Gumby genes. Where and under what circumstances will you need to be tying the knot? Will it need to be tied one-handed? Is speed a consideration? Take a calf roper, for example, he needs a knot he can tie quickly and securely. Would you be able to tie a Prusik on line for self-rescue with one hand if the other is stuck in the device? What about an emergency situation where you might need to bail out a window while blinded by smoke?

Say you want to clip into a fixed rope but need to do it one-handed? The Clove Hitch will be much easier to tie into a carabiner one-handed than most loop knots. Not only that, if you need to adjust your position after clipping in, the Clove Hitch is easily adjusted one-handed.

Ease of Untying

Not only ease of tying, but ease of untying a knot should be thought through, especially with wet rope or heavy loads. Once the knot gets loaded – or if it sees a heavy or shock load – will you be able to get the knot untied? Will you need to use a tool like the marlin-spike to get your loaded knot untied? How often will you be tying and untying the knot? Will the knot be wet or dirty? (Example: a loaded Bowline is easy to untie, while the Figure-8 Bend is more difficult.)

Knot Security

Knot security must always be considered but this is especially true if the knot will be subjected to tension and slack repeatedly. Will the knot be able to untie itself if it is cycled between tension and slack? (i.e., Square Knot vs. Figure-8 Bend) We know that a Butterfly Knot performs much better than a Figure-8 on-a-Bight if the knot is to be pulled in more than two directions. But what about some of the lessons learned over time that we know will make a difference in which knot to select based on other considerations. How difficult is it to untie a Figure-8 on-a-Bight after it has been loaded wet vs. a Two Loop Figure-8?

Tying a fixed line for a rappel? There are several choices to tie a fixed line instead of clipping it to an anchor strap. The Bowline, Clove Hitch, Figure-8 Follow-Through will all work, but if the line goes in and out of tension, how secure is the Clove Hitch compared to the Bowline or Figure-8? If security isn’t a concern, it will be easier to untie the Clove Hitch after it has been loaded followed by the Bowline, with the Figure-8 probably being the most difficult to untie, especially if the rope is wet.

Tying an anchor around a very large object? You will use up a lot more rope and time tying a Clove Hitch vs. a Figure-8 Follow-Through or a Bowline.

How will a knot handle a sustained load or shock load?

If you anticipate a heavy load on a Prusik Knot, consider making it a triple wrap instead of double. This will give you more friction, and it will definitely make it easier to untie later on. A little trick I use to loosen a loaded Prusik is to “push the bar.” By that, I mean to push the section of the knot that runs parallel to the rope that it is tied around away from the main line, which will loosen the knot.

The Water Knot is great for tying webbing together to form a runner or sling. But if it is really loaded, it can be a bear to untie. Try this, turn the knot so it is oriented vertically along its axis and place it between the palms of your hands. Rub your palms together squeezing on the knot and really be aggressive. After a few seconds, see if you are able to work a little looseness into the knot to start untying it. Same thing with a Figure-8 on-a-Bight, grasp the knot with both hands beside each other with half of the knot in each hand. Then, bend the knot back and forth as if you were activating a chem-light. Do this several times and see if you are able to milk a little slack into one side of the knot to start working it loose. Try to push slack into the knot instead of pulling the knot apart. Attack different parts of the knot until you see some movement.

Fighting untying knots?

If you are fighting untying knots on a regular basis, it may be time to add a marlin spike to your kit. A marlin spike is a tapered tool that finishes with a blunt or flat tip. They have been around since ancient times and may be useful to get that first bit of looseness into the tight knot. The warning here is to never place the knot in a position that the spike could slip and puncture your leg or arm, always push the spike away from your body.

If you know you’re going to really load up your knot and especially if the rope is wet, consider clipping a carabiner into the bends of your knot between the lays. This works really well for the Figure-8 on-a-bight or follow-through. Once you are done with that knot, remove the carabiner – this may provide enough slack to work the knot out.

We generally advocate stuffing rope into a bag and working out of the bag, but sometimes we “coil” the rope to go from point A to point B. How often has this led to a bird’s nest of rope? To help prevent a coiled rope from tangling, hold the coil up in one arm and let it hang free. Uncoil the rope with the other hand not allowing the lines to cross. By holding the coil up, gravity will show you which sections are crossing. You will then be able to keep the line straighter than if you dropped the entire coil to the ground and just started pulling rope.

So, you can see there is a lot to think about and consider when choosing what knot you should use and why. As we said earlier, there are hundreds of knots to choose from and many of them do the same jobs. And many are called different names in different books. The key is to identify the category, the application and the circumstances where the knot will be used. Then consider the above and you should be able to identify the proper knot for the job at hand.

Visit our Resources page for videos on knot tying and much more! http://www.rocorescue.com/resources_videos

read more 

Roco Quick Drill #13 - Silent Drill (Know your job, do your job!)

Thursday, November 03, 2016

Many rescue scenes (and teams) are plagued by confusion because of too much communication. And, if you have three people assigned to do a task, each one will have his or her own idea of how it should be done, where the system should be anchored, etc. Many times the discussion that follows eats up valuable time and slows the team’s ability to get rescuers into a location and get hands on the patient.

This drill is designed to instill confidence among team members, to ensure that rescuers understand their responsibilities at the scene and to help rescuers understand that there are different ways to accomplish the same goals safely. It also helps in getting rescuers to look at the entire scene and understand where their assignment fits in the big picture. It encourages team members to anticipate and solve their own problems.

1) Assign a safety officer/drill manager.

2) Locate a simple vertical simulated space to enter or a balcony or roof edge. The goal is to lower the rescuer into an area.

3) Safety officer/drill manager describes the event to the team and assigns task(s) to each team member.

4) Instructs the team that they are not allowed to speak unless a dangerous condition is observed.

5) Instructs team members to gather the equipment necessary to accomplish their job or task. (Remember No Talking!)

6) Once team members have the needed equipment, move them to location and let them start rigging to get rescuer into the space or over the edge.

7) Once rescuer is lowered into area, leave systems rigged and debrief entire team on the rigging, the order that it was done and what could be done differently.

The difficulty of this drill can be increased by doing an entire simulated rescue or adding SCBA/SAR to the station requirements. You will find that a lot of unnecessary chatter that occurs at rescues will be reduced. It will allow you to see who truly understands “where and how” each component of a rescue system fits in the overall operation. It also encourages rescuers to look at the big picture and anticipate what, where and when they will need to have their assignments completed without waiting for direct supervision.

read more 

Next
1 2 3

RescueTalk (RocoRescue.com) has been created as a free resource for sharing insightful information, news, views and commentary for our students and others who are interested in technical rope rescue. Therefore, we make no representations as to accuracy, completeness, or suitability of any information and are not liable for any errors, omissions, or delays in this information or any losses, injuries, or damages arising from its display or use. All information is provided on an as-is basis. Users and readers are 100% responsible for their own actions in every situation. Information presented on this website in no way replaces proper training!