Roco Rescue

RescueTalk

WE DO RESCUE

Calculating Compound M/A

Tuesday, June 13, 2017

We recently had a request for additional information beyond what was shown in our “Theory of Mechanical Advantage” video by Chief Instructor Dennis O'Connell. The reader would like to know more about calculating compound mechanical advantages.

First of all, a simple mechanical advantage (MA) is quite easy to calculate as long as you follow a couple of basic rules.

MAs are generally expressed in numeric ratios such as 2:1, 3:1, 4:1, etc. The second digit of the ratio, or the constant "1" represents the load weight. The first digit, or the variable 2, 3, 4, etc. represents the theoretical factor that we divide the load weight by, or inversely multiply the force we apply to the haul line.

I say theoretical as these calculations do not take into account frictional losses at the pulleys and resistance to bend as the rope wraps around the pulley tread. So a 3:1 mechanical advantage would make the weight of a 100-pound load feel like 33 pounds at the haul line, but we do lose some advantage due to those frictional losses. An even more important consideration is the fact that we multiply our hauling effort by the variable, which is important to understand when we think about the victim or an on-line rescuer that has become fouled in the structure. This is also important when considering the stresses on the haul system including the anchor, rope, and all components in the system.

We also need to pay attention to the amount of rope that must be hauled through the system to move the load a given distance. If we are using a 4:1 MA and need to move the load 25 feet, we need to pull 100 feet of rope through the system (4 X 25 feet = 100 feet).

To calculate a simple MA, remember this: if the anchor knot is at the load, it will be an odd mechanical advantage (3:1, 5:1, 7:1, etc.). If the anchor knot is at the anchor, it will be even (2:1, 4:1, 6:1, etc.) “even/anchor-odd/load.” And if you count the number of lines coming directly from the load, you will determine the variable (remember not to count the haul line if it passes one final change of direction pulley). For instance, if the knot is at the anchor and there are four lines coming from the load, this will result in a 4:1 simple MA. And if your haul line is being pulled away from the anchor, that only means you have created one final change of direction which oftentimes is done to allow the addition of a progress capture device (ratchet), or simply to make it a more convenient direction of pull. But this 5th line, called the haul line, does not come directly from the load. It comes from the final directional pulley to the haul team and is not to be counted in the simple MA ratio. We would call this set up a 4:1 MA with a change of direction (CD).

Calculating compound MAs is also quite easy. Compound MAs (sometimes called a stacked MA) simply means we are attaching a second MA to the haul line of the original MA. When we do so, we multiply the first digit of the original MA by the first digit of the second MA. If you attach a 2:1 MA to the haul line of a 4:1 MA (2 X 4 = 8), you end up with an 8:1 compound MA. Keep in mind that we have added even more frictional losses into this system, but it is still a pretty powerful MA.

There are potential benefits as well as potential penalties when using compound MAs. One benefit includes using less gear when stacking MAs. For instance, to build a simple 6:1 MA, you will require at least five pulleys, and if you want a final CD, that would require one last pulley for a total of six pulleys. If you decide to build a 6:1 compound MA, you can get away with as few as three pulleys by attaching a 2:1 MA to the haul line of a 3:1 MA. If you wanted one final CD, you would again add one more pulley for a total of four pulleys. The obvious advantage is that fewer pulleys are required, but hidden in there as another advantage is fewer pulleys for the rope to wrap which translates to less frictional loss and bend resistance.

Another benefit to stacking MAs may be the reach you need to attach to the load. If the load is 25 feet away from the anchor and you are using a 6:1 simple MA, you will need at least 150 feet of rope, plus some extra to tie the anchor knot, and some spare to wrap over the final directional - if you use one. If the load is 50 feet below the anchor and you want to stick with the simple 6:1 MA, you are looking at a minimum of 300 feet of rope.

So, what if we send a 3:1 MA down from the anchor to the load 25 feet below and attach a 2:1 to the haul line of the original 3:1 to build a 6:1 compound MA?

Well, in this case we would need 75 feet of rope plus some extra for knots for the original 3:1, and two times the length of the compounding MA throw. Throw? What the heck is throw? Throw is a term we use when we have a limited distance between the compounding MA anchor and where we can safely attach the compounding MA to the haul line of the original MA.

In the diagram below you can see the original 3:1 MA extending from its anchor to the load. The added MA, which in this case is a 2:1 has a total throw of 10 feet which requires a little over 20 feet of rope to construct. So, if we add the 75+ feet of rope required for the original 3:1 to the 20+ feet for the added 2:1, we arrive at a bit over 95 feet of rope required for this compound 6:1 MA to reach a load 25 feet from the anchor. This can be two separate ropes, one a bit over 75 feet and a second a bit over 20 feet, or it can be one rope a bit over 95 feet that we can treat as if they were two separate ropes. More on that in a bit.



Remember that we must consider the amount of rope that we need to pull through the system in order to move our load the required distance. So, using a 6:1 compound MA to move the load 25 feet we must pull a total of 150 feet of rope through the system. Whoa, wait a minute! I thought we determined that our total rope needs were only a bit over 95 feet, so how did we come up with 150 feet of rope? One of the disadvantages of compound MAs is the need for resets when the throw is not long enough to move the load the needed distance. So, even though we are using in the neighborhood of 95 feet of total rope, we are pulling the same section of rope through the second MA multiple times.

Well, this is one of the big disadvantages of a compound MA. We need to reset the system multiple times to move the load the required distance. To help envision a reset cycle, let’s assume we have our original 3:1 mounted to an anchor, and 25 feet from that anchor is the 3:1 attached to the load. The haul line of the original 3:1 goes through a final CD, and we have attached a ratchet at that final CD to capture the progress of the loads movement. One option is to find a second anchor and in this case we found one 10 feet away from the final CD of the 3:1. We tie an anchor knot and attach it to that second anchor and route the remaining 20+ feet of rope through a pulley which we attach to the haul line of the original 3:1 with a rope grab. We now have our 2:1 pulling on the haul line of a 3:1 resulting in a 6:1 compound MA.  But…… and there’s always a “but,” isn’t there? We can only move the load a bit over 3 feet at a time before we completely collapse the 2:1 and need to reset it for the next haul. Remember, the 2:1 only has a 10-foot travel or “throw” and that distance is divided by 3 as it is pulling on a 3:1 MA. In addition to that, we have pulled about 20 feet of rope through the 2:1 just to move the load a bit over 3 feet. In order to move the load the entire 25 feet we will need to reset the system about 8 times and that is some slow going. Just to point out one option to speed up the haul by reducing the amount of resets needed, if you sent the original MA to the victim as a 2:1 and then stacked a 3:1 MA with 10 feet of throw onto that 2:1, you would still have your compound 6:1 but would only need to do about 5 resets and could do it with a bit over 80 feet of rope.




There are all sorts of options when deciding what type and ratio of MA to use in a rescue effort. You can get pretty creative when building MAs, but be aware that creativity can sometimes lead to crazy. Remember the KISS principle…keep it simple and safe.

If you are overbuilding an MA just to show a cooler way of doing it, you may be missing the point of the job. There is someone in trouble that is relying on you getting them up and out of their predicament, and sometimes we can get a little carried away with our creativity, especially when it comes to MAs. 3:1 Z-rigs are a great option especially with the addition of devices like the Petzl ID or the CMC MPD as your first MA change of direction and progress capture device. Plus, this gives you the ability to convert to a lower with friction control already built in. But you can really complicate things by compounding a second MA onto a Z-rig to get a higher ratio MA. You will soon learn that now you have to perform two separate resets of the haul cams. And, if you are out of sequence in the reset, the haul cam of the second MA will jam into the traveling pulley of that system and stop you in your tracks. There are some tricks to really make the resets for this system go nicely, but that will have to wait for another day.

There are hundreds of variations that you can use for compounding MAs, but once again I caution you to remember KISS. I have my favorites and every once in a while the situation calls for something a little different, and that’s where understanding the advantages and disadvantages of the systems is of great value.

For additional video resources on mechanical advantage as well as other techniques and systems, visit Roco Resources.

read more 

Pre-entry Atmospheric Clearance Measurements

Friday, March 17, 2017

The following article was written by Russell Warn and published in ISHN magazine (ishn.com), December 2016. Roco comments have been added to the article and are noted in red.

Working in confined spaces presents a unique and dangerous challenge in combatting the unseen – oxygen deficiency, poisonous or explosive gases, and other hazardous substances are among the most frequent causes of accidents associated with work in confined spaces and containers.

From 2005-2009, the Bureau of Labor Statistics reported nearly two deaths per week, or roughly 96 per year, could be attributed to confined space, with about 61 percent occurring during construction repair or cleaning activities.

With conditions subject to change in a moment’s notice, taking steps to protect against life-threatening dangers should always be a top priority in confined spaces. Performing a thorough clearance measurement is a demanding — yet crucial — task that dictates the safety environment, and should not be taken lightly. To help guide you along your road to enhanced safety, outlined below are several best practices based on frequently asked questions.

When should I perform a clearance measurement?

Conduct clearance measurements immediately before operations begin. Environmental factors such as temperature and air flow can change the atmosphere, causing readings to fluctuate. One shift’s measurement taken at 7 a.m. is not representative of the conditions when work operations commence for another shift at 4 p.m. New clearance measurements must be taken immediately to account for the nine hours of changing temperatures and ventilation patterns, depicting the accurate readings of present conditions.

Roco Comment: In addition to pre-entry clearance measurements, entry into permit spaces during construction activities requires "continuous atmospheric monitoring" unless the entry employer can demonstrate that equipment for continuous monitoring is not commercially available or periodic monitoring is sufficient. Ref. 1926.1203 (e)(2)(vi), 1926.1204 (e)1)(ii), and 1926.1204 (e)(2). Additionally, Roco believes that for "ALL" permit entry operations, it is advisable to provide continuous atmospheric monitoring no matter what the industry activity entails.

What’s the importance of zero-point adjustment?

When performing clearance measurements, it’s crucial to determine the reference point of the gas detector by calibrating the zero-point. The zero-point ensures that the indicated values correspond to the actual existing gas concentrations. In order to determine that the actual zero-point has been found, calibrate equipment in an environment where the hazardous substance is not present, such as fresh air environments. With every scientific test, no matter the field, a control group, which serves as a starting point of reference, permits for the comparison of results to show any contrasting changes. The zero-point calibration acts as such, allowing workers to identify the presence, or lack thereof, of different gas concentrations.

Where do I measure/take the sample?

When it comes to measuring samples, there are four things to keep in mind: the physical properties of gases, and the type and shape, temperature and ventilation patterns of the confined space.

Know the differences between light and heavy gases. Clearance measurement experts must have a strong working knowledge of hazardous substances’ properties, as they play a role in where measurements should be taken. For example, if a sample is pulled from the top of the confined space and hydrogen sulfide (H2S) is detected, the sample may not be entirely reliable. H2S has a molar mass of 34 g/mol, which is significantly heavier than that of air (29 g/mol). As a result, H2S sinks to the bottom of a space, where its concentration would be greatest. Identifying a presence at the top of the confined space says immediate danger and appropriate actions should be taken.

Light gases quickly mix with air and rise to the top. As a result, any measurements in open atmospheres should be performed close to the leak, and increases in concentration should appear in the highest points of the confined space. Heavy gases, on the other hand, should sink and flow like liquids, pass obstacles or stick to them. They barely mix with air like light gases do, so their samples should always be taken at the lowest points of the confined space.

Determine the type/shape of the confined space: In an ideal scenario, each confined space area would be in an “even” or level position. This isn’t always the case, and a container may be placed on an inclined surface, making the highest point in the corner positioned toward the top of the inclined surface. Thus, entry may be nearer to where the heavy gases have accumulated.

Take tabs on temperatures. All matter is made up of atoms and molecules that are constantly moving. When heat is added to a substance, such as a gas, the molecules and atoms vibrate faster. As the gas molecules begin to move faster, the speed of diffusion increases. If the sun has been shining on a tank for hours, there’s a good chance the clearance measurement taken at dawn no longer reflects the current readings due to the increase in diffusion.

Vet the ventilation. Air currents change the position and concentration of air clouds, and often times, the way a confined space is ventilated can affect readings. Containers cannot always be separated from pipelines, or there may be leaks in the tanks that must be accounted.

Roco Comment: Not only is it required by certain OSHA provisions like alternate entry procedures, but Roco highly recommends monitoring the atmosphere prior to initiating ventilation. This is intended to provide a reasonable assessment of the potential atmosphere change should the ventilation equipment fail. The rate for a potential hazard to re-develop will be based on factors such as the effectiveness of isolation, any residual product within the space, temperature, humidity and passive ventilation which are among just some of the factors.

How do I safely conduct the measurement for an accurate reading?

People often question why they can’t just use the carrying strap of their device to lower the device into the confined space for a reading. Although this seems like a simple fix, it’s not a safe or recommended way to conduct the measurement. Lowering the device into the container this way not only obscures the way the display is read, but it may not audibly alarm. If the measured value is slightly below the threshold value and the alarm does not sound, a worker would not be notified of the dangerous concentrations lurking below. Not only this, but measurements may be inaccurate since the measured gases, due to their molar masses, may be concentrated at a higher or lower point within the container. Clearance measurements should be conducted on-site and on-the-ground of the confined space for accurate, safe readings.

Roco Comment: The points made in the preceding paragraph are certainly valid. The best solution that we can offer is to use remote sampling probes or tubes to actively draw (pump) samples from the stratified levels of the space while the direct reading instrument is in a position outside the space to observe the real time readings. To expound upon the point the author makes, if the pre-set threshold for the alarms are not enough to trigger the alarm indicating the presence of a hazardous atmosphere, and the individual performing the assessment relies instead on rapidly pulling the monitor from the space in the hope that they are able to read the display before the values change, is a very dangerous way of approaching this procedure. Depending on the sampling rate of the monitor, the hazardous gas(s) may have cleared from the monitor in the time it takes to withdraw it from the space, and it is very likely that the instrument will display a normal atmosphere by the time it is back within view. Additionally, for areas within the space that cannot be remotely assessed by remote sampling prior to entry, the only safe recourse is to limit entry to the areas that have been assessed and to take a monitor into the space to continuously assess the unreachable regions before venturing further.

What do I need to document during clearance measurement protocols?

Just as it’s important to remain thorough in clearance measurements procedures, it’s equally as important to remain thorough in the general housekeeping protocols surrounding samples. This includes documenting:

  • The container number
  • The measuring point of the container, and whether there was more than one measuring point
  • At which time was the clearance performed
  • Under what condition was the measurement performed
  • Measured hazardous substances
  • Name of person performing measurement
  • Equipment used for clearance

Safety, regardless of job title or responsibility, should be everyone’s top priority. When working in the midst of poisonous and explosive hazards, performing clearance measurements correctly and carefully means not only keeping one’s self safe, but keeping the working environment safe, as well.

About the Author:
Russell Warn is the product support manager for gas detection products at Dräger. He has been in the safety industry for more than 29 years, with most of this time dedicated to gas detection product and application support.

read more 

Q&A: Fall Pro Recert

Wednesday, June 01, 2016

READER QUESTION:
I went through competent person for fall protection several years ago and since that time a lot has changed regarding the types of fall protection equipment and systems that are available. Should I get update training for this role?

ROCO TECH PANEL ANSWER:
Yes, definitely. In fact, ANSI Z359.2 states competent person training update training shall be conducted at least every two years. It is always a great idea for competent persons to stay abreast of not only any legislative changes, but also to stay current on consensus standards such as ANSI, and certainly on emerging equipment technologies. It is amazing how quickly new fall protection equipment is becoming available. It wasn’t long ago that harness mount self-retracting lanyards were just a drawing on an engineer’s desk, and now there are so many different versions it is mind boggling. OSHA’s recognition of suspension trauma as a workplace hazard to fallen suspended authorized persons has created an entire market segment for systems to help deal with this hazard. So receiving update training for this crucial role at least every two years is certainly a great idea.

READER QUESTION:
Can I complete competent person for fall protection training via an on-line course?

ROCO TECH PANEL ANSWER:
We discourage that type of course other than for learning the legislated requirements. There just is no substitute for hands-on training. One of the most important responsibilities of a competent person for fall protection is the performance of periodic equipment inspections. I can’t imagine having any way to show competency of this skill without demonstrating it to a live instructor/evaluator.

read more 

What is a Competent Person?

Wednesday, March 02, 2016

Many OSHA standards, especially in construction, require a “competent person” to be designated at the jobsite. Filling this role requires proper training, relevant experience to the work being performed and adequate knowledge of the associated regulations. 

The competent person should be able to recognize critical hazards as well as have the authority to take the action needed to mitigate hazards. It’s much more than just picking someone to fill a slot.

A previous article, "What is a Competent Person?" found in the National Safety Council's Safety+Health publication, talks about how the term is often taken too lightly. Again, it's much more than just selecting a body to fill a role or attending one 10-hour training class covering all the various standards. Competency must be considered and evaluated for this important role. 

At a minimum, your designated competent person should meet the following minimum qualifications:
(1)    A high level of understanding of the types of hazards typically encountered in that area of work;
(2)    A solid review of applicable standards relating to that type of work; and,
(3)    A thorough understanding of types of solutions to control or eliminate the hazards
.

To assist in preparing your competent person in fall protection, we encourage you to register for Roco's Fall Protection
Competent Person - April 4-5, 2016 course in Baton Rouge. This course will provide practical experience in recognizing fall hazards and developing appropriate measures for reducing or eliminating those hazards. 

read more 

Q&A: What are the Rescue Requirements for Trenches/Excavations?

Tuesday, May 19, 2015

READER QUESTION:
One of our readers recently asked about rescue requirements in excavations. We did some searching and found an interesting Letter of Interpretation (LOI) from OSHA that explains when rescue provisions are required during trenching operations.  

ROCO TECH PANEL ANSWER:
The following is from OSHA LOI in regards to this answer. In regard to whether emergency rescue equipment is required at every trenching job site located near or passing by a gas station, refinery, gas line, sewer main, etc., please be advised by the following:

Emergency rescue equipment is required to be readily available where a competent person determines, based on the conditions at each job site, that hazardous atmospheric conditions exist or may reasonably be expected to develop during work in an excavation. In regard to whether a contractor can rely on a local rescue squad instead of providing the rescue equipment, please be advised that many emergency situations associated with the hazards involved with hazardous atmospheres in trenches would normally require an immediate response within a few minutes or even seconds. A rescue squad would be unable to provide the necessary response and therefore could not be used to comply with 1926.651(g)(2).

As more and more industrial sites realize that just about every day, somewhere on their property, there is an open trench. Trench collapses cause dozens of fatalities and hundreds of injuries each year. Obviously, this creates concerns, especially for the rescue personnel who may be called to the scene during an emergency.

We’ve been getting questions from clients that have effective rescue teams for medical, hazmat, fire, confined space and rope but are realizing that they are lacking if a trench collapse occurs on their site. “Who will do the rescue?” is a question often asked. There is concern by supervisors, who have been given the responsibility for signing trench permits, but have not had adequate training in trench and excavations. Many are not “competent persons” as referenced in OSHA1926.651-652.

After looking at the dozen of questions in the referenced LOI, it should raise a few more:

  1. Are the people you have signing off that a trench is constructed properly and safe for entry, trained to know what to look for and have the authority to act (competent person), or are they assuming that the contractor is “doing the right thing”?
  2. Who will be called if a trench emergency should occur?
  3. Are their local resources that have the training and equipment to respond, or are you an island unto yourself when it comes to trench rescue? 

The link to the referenced LOI is shown below – and the questions are still very relevant : https://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=INTERPRETATIONS&p_id=20597

Additional Resources:

OSHA Technical Manual

OSHA Trenching and Excavation Safety

Trench Safety Poster – An Unprotected Trench Is An Early Grave

read more 

Roco Tech Panel Q&A - Prompt Rescue by Shift

Sunday, February 01, 2015

READER QUESTION:
Our company procedures require an on-site rescue capability for permit- required confined space entry operations during normal Monday-Friday “day shift” operations, but for entries other than during that shift, we rely on an off-site rescue service. Shouldn’t the rescue capability, specifically the rescue response time, be the same no matter when the permit required confined space entries are being made?

ROCO TECH PANEL ANSWER:
Yes; and no, not necessarily.

Yes, if the nature of any known or potential hazards that may affect the entrants in the permit space, and the configuration of the confined space are the same during regular M-F day shift as they would be during off-shift entries, then the answer is yes. The rescue capability regarding response time, manning, equipment, and overall performance capability should be the same.

No, not necessarily. For example, if the nature of the known or potential hazards of a permit space entered during the day shift requires a shorter response time, or if the configuration of the space requires a higher level of rescue expertise, rescuer PPE, number of rescue personnel, or if there is any other factor that may require a different performance capability than the requirements of the day shift entries, then no, the same rescue capability would not necessarily be required.

This is because OSHA 1910.146 is a performance-based standard. For confined space rescue, specifically regarding what would be considered “prompt rescue,” the performance standard will be most influenced by the nature of the potential and known hazards and how quickly the hazards will affect the authorized entrants, as well as the complexity of providing effective rescue from the particular permit-required confined space.

To demonstrate this point, here are some extracts from OSHA 1910.146 Permit Required Confined Space Regulation Section K, the Summary and Explanation of the Final Rule, and also from OSHA 1910.146 Appendix F.

From 1910.146 (k)(1)(i)“Evaluate a prospective rescuer's ability to respond to a rescue summons in a timely manner, considering the hazard(s) identified;

Note to paragraph (k)(1)(i): What will be considered timely will vary according to the specific hazards involved in each entry. For example, §1910.134, Respiratory Protection, requires that employers provide a standby person or persons capable of immediate action to rescue employee(s) wearing respiratory protection while in work areas defined as IDLH atmospheres.”

From the Summary and Explanation of the Final Rule (1910.146) “OSHA has therefore decided to promulgate the requirement it proposed for "timely" rescue, a requirement that was not opposed by any rulemaking participant, rather than to define precisely what is timely. That determination will be based on the particular circumstances and hazards of each confined space, circumstances and hazards which the employer must take into account in developing a rescue plan. OSHA has added a note to paragraph (k)(1)(i) to clarify this point.”

From 1910.146 Appendix F, A. Initial Evaluation, II, 1. “What are the needs of the employer with regard to response time (time for the rescue service to receive notification, arrive at the scene, and set up and be ready for entry)? For example, if entry is to be made into an IDLH atmosphere, or into a space that can quickly develop an IDLH atmosphere (if ventilation fails or for other reasons), the rescue team or service would need to be standing by at the permit space. On the other hand, if the danger to entrants is restricted to mechanical hazards that would cause injuries (e.g., broken bones, abrasions) a response time of 10 or 15 minutes might be adequate.”

The response time of the rescue service is also different than the time needed to provide rescue. Response time generally means the time it takes for the rescue service to arrive on scene. From that time forward, the rescue service must perform a size-up, identify and don PPE, set up rescue systems, and perform many other tasks before initiating entry rescue. Any need to provide victim packaging or to deliver breathing air to the victim will add to the total time it takes to complete the rescue.

Therefore, it is imperative that the employer ensures that the measure of “Prompt Rescue” is driven by the nature of the known or potential hazards of the permitted confined space as well as the complexities of the configuration of the space and how those will effect the time required to the setup the rescue system.

Roco provides confined space rescue services for a variety of industries and is confronted with a very wide range of hazards associated with the entry operations and a vast range of space configurations. The determination on the rescue team’s posture is based primarily on the answer to the following questions.

  • 1.  How quickly will the entrants be overcome by the known or potential hazard(s) of the space, and /or how quickly will the entrants suffer permanent injury if exposed to those hazards?

  • 2.  If non-entry retrieval systems are not employed due to the system not contributing to an effective rescue, or the retrieval system creates a greater hazard, how much time would be needed to arrive on scene, set up an entry rescue system to support the entrant rescuer(s) and the victim(s)?

These are just two of the primary questions that we consider for our CSRT operations. If the nature of the known or potential hazards would require a near immediate rescue of the entrant(s), we would assume a “Rescue Standby” posture where the rescue systems are pre-rigged, the entrant rescuers are already in appropriate PPE or have it available to be quickly donned, and the rescue effort can be initiated in a very short time in an effort to meet that “Prompt Rescue” performance benchmark.

It is vitally important that the employer honestly evaluates the nature of the hazards or potential hazards of the permitted confined spaces that they plan on entering. This can be accomplished by reviewing product SDS (Safety Data Sheets), understanding the nature of the hazards that are not included in the SDS, and always considering worst case scenarios. Additionally, the employer must include an evaluation of the time it would take the rescue service to arrive on scene as well as the additional time to safely assess the situation and setup the required rescue systems prior to initiating rescue.

The answer to the question of a different rescue capabilities based on the “day shift” or “night shift/week-ends” can only be answered by performing a thorough assessment of the permitted spaces. And, on a case by case basis, determine if the rescue capability for that particular entry operation does indeed meet the spirit of “Prompt Rescue.” 

read more 

Q&A: Appendix F (1910.146)

Wednesday, January 07, 2015

READER QUESTION:
If Appendix F is non-mandatory, then why is it relevant to my PRCS program?

ROCO TECH PANEL ANSWER:
Questions often arise about the application of Appendix F of OSHA’s Permit Required Confined Spaces standard. Those questions usually focus on the “non-mandatory” characterization of the appendix.

The question most often asked is “If it’s non-mandatory, why should I even bother with it?” The answer is simple: even though Appendix F itself is “non-mandatory,” the methods for compliance in the appendix all relate to mandatory requirements of the standard. Appendix F is simply a non-mandatory method for complying with mandatory requirements.

The trick when evaluating the methods of compliance outlined in Appendix F is to match the particular non-mandatory provision of the appendix with the corresponding mandatory requirement of the standard. Then the employer can either use the method suggested in the appendix, or devise its own method to comply with the mandatory requirement.

For example, with regard to outside rescue services, Appendix F paragraph A(3) asks the question: “If the rescue service becomes unavailable while an entry is underway, does it have the capability of notifying the employer so that the employer can instruct the attendant to abort the entry immediately?”

This provision does not create a mandatory requirement, but it does prompt the employer to take into account mandatory requirements of the standard. OSHA 1910.146(j)(3) makes it mandatory for the entry supervisor to terminate the entry and cancel the permit as required by paragraph (e)(5) of the standard.

Paragraph (e)(5) requires the entry supervisor to cancel the entry permit when “a condition that is not allowed under the entry permit arises…” If the particular entry requires rescue service availability and the rescue service suddenly becomes unavailable during the entry, that would be “a condition that is not allowed under the entry permit” requiring the entry supervisor to cancel the permit.

So although there is no provision that specifically states that the rescue service notify the employer if it becomes unavailable, from a practical standpoint the employer cannot comply with the requirement that it cancel the permit and terminate the entry when a condition not allowed under the entry permit arises unless such a notification system is in place. This is just one example of how the provisions of non-mandatory Appendix F provide a method to comply with mandatory requirements.

When considering the provisions of non-mandatory Appendix F, the employer would be wise to determine which mandatory provisions the method stated in the appendix addresses. Of course, the employer is free to choose some other method to comply with the mandatory provision and does not necessarily have to follow the method suggested in the appendix. In that sense, the appendix is “non-mandatory.” But, nonetheless, the employer must comply with the underlying mandatory provision, and take any steps necessary to do so.

read more 

Q&A: Sked Stretcher - Is a Backboard Required?

Wednesday, April 02, 2014

READER QUESTION:
Can a patient be lowered in a vertical or horizontal Sked without being lashed to a backboard or without a backboard at all?

ROCO TECH PANEL RESPONSE:

The answer is YES! This is one of the advantages of choosing the Sked stretcher.


It can be used with most (if not all) backboards, with a short spine immobilizer, or with nothing at all.

There are two general considerations in deciding what device to use with the Sked or other flexible litters:

(1) Patient Condition - If spinal injuries or other injuries need the splinting effects or the protection of a backboard, then the victim should be lashed to a backboard. When a backboard is not in place, the Sked will help keep the body in line when tightened; however, the spine can continue to be manipulated up and down as patient is moved over objects or edges which can compromise the spine.

If you are just using the backboard to keep the Sked rigid or protect the patient while placing them over edges, then technically you would not need to lash them to the backboard.

When a confined space is too tight to use a backboard and possible spinal injuries are suspected, or additional protection for placing a patient over an edge is wanted, then a short spinal immobilizer such as the OSS can be used. If a spinal injury is not suspected, then no additional equipment needs to be used with the Sked. It is always good to keep in mind, however, that the thin plastic make-up of the Sked will allow the patient to feel every edge or bump you place or drag them over.


(2) Location
- What size portal do you need to get the patient and packaging through in order to perform the rescue? Many times in portals less than 18-inches, the individual pieces of equipment will fit into the space, but once put together they will not fit back out of the space. The Sked was designed for this specific circumstance. The thin plastic construction allows it to fit in places many other litters will not.

The Sked can also be used vertically with the bottom not curled and secured in cases where a hare-traction splint or other injury doesn’t allow securement at the bottom.

The Sked is a very user-friendly device that can be used in a multitude of configurations and for various applications. This is one of the reasons why it is such a popular rescue tool, especially for confined space rescue! Stay safe!


NOTICE: The information provided on our website and by our Tech Panel is a complimentary service for our readers. Responses are based on our understanding of the reader’s inquiry, the equipment and/or the technique in question. All rescue systems should be evaluated by a competent person before use in the support of any human loads. Proper training is required prior to use of rescue techniques or systems discussed. Because standards and regulations are typically performance based and often dependent on specific circumstances, it is important to review all regulations in their entirety and to follow the proper protocols for your company or organization.

read more 

Q&A: Tech Panel Answers

Tuesday, June 18, 2013

QUESTION FROM OUR READER:
In the new Stokes lashing video the instructor tied 2 butterfly knots into the webbing. Can this also be done with 2 figure eight knots in the webbing? Also I was looking for the information on Sked lashing, with by-passing the top 2 grommets and starting with the first 2 on the sides.

ANSWER:

The answer to your question about substituting figure-8 knots for butterfly knots in the webbing for the stokes lashing is Yes you can. You could also use two separate pieces of webbing to accomplish the same goal. If you go to quick search and type in "skedco lashing" it will bring you to a downloadable document.

read more 

Lanyard Safety

Tuesday, December 04, 2012

Here's a question from one of our readers: How can you test a lanyard to determine if it is safe to use? Is there a standard checklist or procedure?

Answer from the Roco Tech Panel: As with all safety and rescue gear, we recommend that you inspect, use and care for it in strict accordance with the manufacturer’s instructions. Of course, all equipment should be carefully inspected before and after each use. And, as we always say, “If there’s any doubt, throw it out!” Sometimes it’s less expensive to simply replace the gear versus going through any elaborate testing process. We did find the following information regarding lanyard inspections in an “OSHA Quick Takes” document. Thank you for your question!

Lanyard Inspection

To maintain their service life and high performance, all belts and harnesses should be inspected frequently. Visual inspection before each use should become routine, and also a routine inspection by a competent person. If any of the conditions listed below are found, the equipment should be replaced before being used.

When inspecting lanyards, begin at one end and work to the opposite end. Slowly rotate the lanyard so that the entire circumference is checked. Spliced ends require particular attention. Hardware should be examined under procedures detailed below.

HARDWARE
Snaps: Inspect closely for hook and eye distortion, cracks, corrosion, or pitted surfaces. The keeper or latch should seat into the nose without binding and should not be distorted or obstructed. The keeper spring should exert sufficient force to firmly close the keeper. Keeper rocks must provide the keeper from opening when the keeper closes.

Thimbles: The thimble (protective plastic sleeve) must be firmly seated in the eye of the splice, and the splice should have no loose or cut strands. The edges of the thimble should be free of sharp edges, distortion, or cracks.

LANYARDS
Steel Lanyard:
While rotating a steel lanyard, watch for cuts, frayed areas, or unusual wear patterns on the wire. The use of steel lanyards for fall protection without a shock-absorbing device is not recommended.

Web Lanyard: While bending webbing over a piece of pipe, observe each side of the webbed lanyard. This will reveal any cuts or breaks. Due to the limited elasticity of the web lanyard, fall protection without the use of a shock absorber is not recommended.

Rope Lanyard: Rotation of the rope lanyard while inspecting from end to end will bring to light any fuzzy, worn, broken or cut fibers. Weakened areas from extreme loads will appear as a noticeable change in original diameter. The rope diameter should be uniform throughout, following a short break-in period. When a rope lanyard is used for fall protection, a shock-absorbing system should be included.

Shock-Absorbing Packs
The outer portion of the shock-absorbing pack should be examined for burn holes and tears. Stitching on areas where the pack is sewn to the D-ring, belt or lanyard should be examined for loose strands, rips and deterioration.

VISUAL INDICATIONS OF DAMAGE

Heat
In excessive heat, nylon becomes brittle and has a shriveled brownish appearance. Fibers will break when flexed and should not be used above 180 degrees Fahrenheit.

Chemical
Change in color usually appears as a brownish smear or smudge. Transverse cracks appear when belt is bent over tight. This causes a loss of elasticity in the belt.

Ultraviolet Rays
Do not store webbing and rope lanyards in direct sunlight, because ultraviolet rays can reduce the strength of some material.

Molten Metal or Flame
Webbing and rope strands may be fused together by molten metal or flame. Watch for hard, shiny spots or a hard and brittle feel. Webbing will not support combustion, nylon will.

Paint and Solvents
Paint will penetrate and dry, restricting movements of fibers. Drying agents and solvents in some paints will appear as chemical damage.

CLEANING FOR SAFETY AND FUNCTION

Basic care for fall protection safety equipment will prolong and endure the life of the equipment and contribute toward the performance of its vital safety function. Proper storage and maintenance after use is as important as cleaning the equipment of dirt, corrosives or contaminants. The storage area should be clean, dry and free of exposure to fumes or corrosive elements.

Nylon and Polyester
Wipe off all surface dirt with a sponge dampened in plain water. Squeeze the sponge dry. Dip the sponge in a mild solution of water and commercial soap or detergent. Work up a thick lather with a vigorous back and forth motion. Then wipe the belt dry with a clean cloth. Hang freely to dry but away from excessive heat.

Drying
Harness, belts and other equipment should be dried thoroughly without exposure to heat, steam or long periods of sunlight.

For the complete OSHA Quick Takes document, click here.

read more 

Next
1 2 3 4

RescueTalk (RocoRescue.com) has been created as a free resource for sharing insightful information, news, views and commentary for our students and others who are interested in technical rope rescue. Therefore, we make no representations as to accuracy, completeness, or suitability of any information and are not liable for any errors, omissions, or delays in this information or any losses, injuries, or damages arising from its display or use. All information is provided on an as-is basis. Users and readers are 100% responsible for their own actions in every situation. Information presented on this website in no way replaces proper training!