Roco Rescue



Trench Training: A Careful Balance Between Realism and Safety

Tuesday, March 12, 2013

by Dennis O' Connell, Director of Training/Chief Instructor

This IPhone video captured at a recent training exercise is being posted here solely to illustrate the powerful nature of a trench collapse. Instructors were aware that a collapse was imminent and a “safe zone” was established along with other measures that will be discussed in this article. It’s important to note that all students were cleared from the area prior to releasing the struts for the collapse. This video is presented with the intention of helping trainers and rescuers achieve greater safety awareness during training events.

You’ve probably heard the saying “train as you play, and play as you train” many times. However, for rescuers, this training mentality is essential! Rescuers should have the ability to handle a wide variety of events, but must also appreciate the dangers of the job.

Realism is the key to effective training and prepares rescuers both physically and mentally. The more demanding and technical the rescue, the more important it is to simulate the appropriate skills as closely as possible. This realism during training will help rescuers understand what to expect during a real rescue.

This behavior needs to be practiced but must also be balanced with safety as the #1 priority. To avoid injuries, a risk analysis must be conducted and carefully reviewed. This will help in planning the training exercises and in determining possible hazards where students may be most at risk. Everyone involved in the training exercises (including observers) should be informed of the dangers as well as control measures and safety requirements. Everyone should be aware that they have the ability to stop an evolution immediately should a safety concern be detected.

In order for this to happen, an established rescue plan should be devised for each element of training. An example in high angle training would be an “instructor’s line.” A designated instructor/rescuer, an additional line, and equipment should be staged and ready for a rescue, just in case. Teaching stations should also be set up in close proximity to allow for the use of the equipment from one station to another.

In our quest for realism, we need to constantly re-evaluate as the training proceeds. Risk vs. reward…is this training exercise worth the risk?

Now, let’s take a look at some common techniques used to increase pressure for rescuers and evaluate performance during a “simulated” rescue. Time limits are often used to increase stress levels while performing skills. In rope rescue training, knot tying and patient packaging are good examples where time restraints are a useful tool. On the other hand, if you set time restraints or implement a “speed reward” for how fast you can rappel down a building or perform a rescue, it can lead to unsafe actions that can cause injury or even death.

Here’s a deadly example of speed rewards during training. There was a video of tree trimmers taking their final exam. In the video, they were required to climb a ladder into a tree, anchor themselves off and hook up to a rappel line, rappel down to a simulated victim, and then lower themselves to the ground. In the video, the student is being timed, while being offered a reward for speed. In the process of doing so, the student missed a connection, as did the instructor, and fell to his death.

Another interesting means of rescuer stress or pressure that can develop unexpectedly during training is “peer pressure.”

In the same tape, students can be heard encouraging, for lack of a better word, individuals to beat the clock. If used in the correct manner, this friendly competition can be useful, but if not exercised properly, it can be dangerous. Competitive training exercises should be used only within the design of the class. If it develops unexpectedly, it should be shut down. Otherwise, it can quickly create a dangerous learning environment.

Again, the instructor needs to keep the safety of the students in mind and evaluate all potential consequences.

Span of control is “the number of people one can effectively manage.” The more technical or hands on a training course is, the smaller the number of people a single instructor can safely control.

In rope training, techniques (and teaching) may occur at multiple levels on a structure. For example, pick-off techniques or patient packaging in a simulated confined space rescue exercise. Certain techniques may require additional instructors at various levels to monitor students “going over an edge” and at the “pick-off” level. Or, with a confined space scenario, it may require an additional instructor to be physically located in the space to make sure patient packaging connections are correct prior to raising or life-loading the line.

Sometimes with in-house training, personnel can become complacent with double-checking all systems or having that extra set of eyes from an uninvolved participant. That’s why it is so important that every training exercise is carefully planned and followed through in all areas. 

When training a group of your peers, it can often be difficult to prevent “freelancing” and to keep everyone on the same page. A well-planned training session will include a review of safety issues at the start – every time! The briefing should explain what will be covered (and allowed or not allowed) during the training. This will help students to understand that it’s more than just a “play” session, and will hopefully reduce the temptation for freelance activities.

It’s important for trainers and rescuers alike to watch this video. The training is being conducted in a live trench, which is definitely more realistic and more real world than setting trench panels between two containers.  It is also more dangerous! The instructor ratio, training, and skills must be competent for the task. Acceptable conditions must be re-evaluated constantly and discussed between instructors. In some cases, like this one, a dangerous condition can be presented when students remove trench panels and equipment. This is the time to stop a class and halt all operations. 

During this particular session, there was a large crack or separation in the dirt, which made the weight of the dirt unstable. As you will see, this caused the collapse of a large portion of the trench wall. In this particular situation, it was simply not worth trying to recover the trench panels at the cost of safety. The students were informed of the danger, how it was detected, and how it could be resolved.

Just remember… no piece of equipment or gear is worth injuring a student or instructor! 

After everyone was informed of the danger of an impending collapse, the decision was made to let the wall collapse and to video it as a learning tool for that class and future classes. This video will give you a very clear picture of the speed and force that can occur in a trench collapse.

As you can see, the proper precautions were taken during this exercise in order to demonstrate the incredible power of a trench collapse.

An emergency plan was developed. A safety officer designated areas of safety as well as areas of dangers for students, instructors and observers. In order to maintain the stability of the opposing trench wall, a decision was made to keep a couple of other trench panels in place. A backhoe was used to slope sections of the trench and create a “safe zone” for the instructor to remove the struts, which in turn let the wall collapse. The force of the dirt was so powerful that it snapped a ¾-inch shore form panel and a 2" x 12" strongback like a toothpick.

What you won’t get from the video is the sense of force or vibration that was felt when the trench wall collapsed. It’s something the students will take away from the training along with a much greater respect for the power of a trench wall collapse.

Again, we stress that constant re-evaluation of conditions during technical rescue training is critically important for the safety of all involved. Instructors must have the ability to perceive any differences in the training environment or situation, be able to identify unacceptable conditions, and to take quick, corrective action. Students should also have the ability to stop a training evolution if they perceive danger or have concerns. It’s always best to stop and re-check everything! 

Many times, it’s as simple as letting the students know if they see something that they think is dangerous or not quite right, or if they don’t quite understand, just yell, “STOP!”


This video is a great learning tool that illustrates what can happen during “live trench” training. It dramatically demonstrates the speed and force of a trench wall collapse. However, it also affirms that with proper attention to the training environment and changing conditions, injury can be avoided.

It’s similar to personnel who have been exposed to swift water rescue in real world environments. They take away a much greater respect for the power of moving water, and it cannot be simulated in a swimming pool. Or, with high angle training, while it’s the same technique, rappelling from height versus a one-story building is a totally different experience.

As instructors, we must develop training that will give our students the experience and skills needed to perform their jobs safely. But we also need to keep them safe during training as well. Use this video and the story behind it to emphasize safety and proper planning during training sessions. It also helps us to realize that being a trainer or instructor comes with great responsibility. For me, it’s a constant battle between two thoughts: “No one should get injured during training,” versus “let no man’s ghost return to say his training let him down.”

The need to develop safety plans and perform risk analysis during training is an important part of our job as instructors, and student safety is our #1 priority.

read more 

Lanyard Safety

Tuesday, December 04, 2012

Here's a question from one of our readers: How can you test a lanyard to determine if it is safe to use? Is there a standard checklist or procedure?

Answer from the Roco Tech Panel: As with all safety and rescue gear, we recommend that you inspect, use and care for it in strict accordance with the manufacturer’s instructions. Of course, all equipment should be carefully inspected before and after each use. And, as we always say, “If there’s any doubt, throw it out!” Sometimes it’s less expensive to simply replace the gear versus going through any elaborate testing process. We did find the following information regarding lanyard inspections in an “OSHA Quick Takes” document. Thank you for your question!

Lanyard Inspection

To maintain their service life and high performance, all belts and harnesses should be inspected frequently. Visual inspection before each use should become routine, and also a routine inspection by a competent person. If any of the conditions listed below are found, the equipment should be replaced before being used.

When inspecting lanyards, begin at one end and work to the opposite end. Slowly rotate the lanyard so that the entire circumference is checked. Spliced ends require particular attention. Hardware should be examined under procedures detailed below.

Snaps: Inspect closely for hook and eye distortion, cracks, corrosion, or pitted surfaces. The keeper or latch should seat into the nose without binding and should not be distorted or obstructed. The keeper spring should exert sufficient force to firmly close the keeper. Keeper rocks must provide the keeper from opening when the keeper closes.

Thimbles: The thimble (protective plastic sleeve) must be firmly seated in the eye of the splice, and the splice should have no loose or cut strands. The edges of the thimble should be free of sharp edges, distortion, or cracks.

Steel Lanyard:
While rotating a steel lanyard, watch for cuts, frayed areas, or unusual wear patterns on the wire. The use of steel lanyards for fall protection without a shock-absorbing device is not recommended.

Web Lanyard: While bending webbing over a piece of pipe, observe each side of the webbed lanyard. This will reveal any cuts or breaks. Due to the limited elasticity of the web lanyard, fall protection without the use of a shock absorber is not recommended.

Rope Lanyard: Rotation of the rope lanyard while inspecting from end to end will bring to light any fuzzy, worn, broken or cut fibers. Weakened areas from extreme loads will appear as a noticeable change in original diameter. The rope diameter should be uniform throughout, following a short break-in period. When a rope lanyard is used for fall protection, a shock-absorbing system should be included.

Shock-Absorbing Packs
The outer portion of the shock-absorbing pack should be examined for burn holes and tears. Stitching on areas where the pack is sewn to the D-ring, belt or lanyard should be examined for loose strands, rips and deterioration.


In excessive heat, nylon becomes brittle and has a shriveled brownish appearance. Fibers will break when flexed and should not be used above 180 degrees Fahrenheit.

Change in color usually appears as a brownish smear or smudge. Transverse cracks appear when belt is bent over tight. This causes a loss of elasticity in the belt.

Ultraviolet Rays
Do not store webbing and rope lanyards in direct sunlight, because ultraviolet rays can reduce the strength of some material.

Molten Metal or Flame
Webbing and rope strands may be fused together by molten metal or flame. Watch for hard, shiny spots or a hard and brittle feel. Webbing will not support combustion, nylon will.

Paint and Solvents
Paint will penetrate and dry, restricting movements of fibers. Drying agents and solvents in some paints will appear as chemical damage.


Basic care for fall protection safety equipment will prolong and endure the life of the equipment and contribute toward the performance of its vital safety function. Proper storage and maintenance after use is as important as cleaning the equipment of dirt, corrosives or contaminants. The storage area should be clean, dry and free of exposure to fumes or corrosive elements.

Nylon and Polyester
Wipe off all surface dirt with a sponge dampened in plain water. Squeeze the sponge dry. Dip the sponge in a mild solution of water and commercial soap or detergent. Work up a thick lather with a vigorous back and forth motion. Then wipe the belt dry with a clean cloth. Hang freely to dry but away from excessive heat.

Harness, belts and other equipment should be dried thoroughly without exposure to heat, steam or long periods of sunlight.

For the complete OSHA Quick Takes document, click here.

read more 

Question from a Petzl ID User

Tuesday, November 06, 2012

Here's a question for the Roco Tech Panel from one of our readers.
I recently became the ERT trainer. I have introduced the Petzl descender to the group and they love it. The question was brought up about the rating for lowering and raising of patients. What is it limits and can it be used in hauling up a two-person load? The max load the manufacturer says is around 600 pounds, and I am not sure if this is enough to meet what NFPA says. I really enjoyed the video Roco put out on this device, and would really enjoy seeing more on on other equipment.

Answer from the Tech Panel: Yes, you can use the Petzl ID-L (ID with red side plates that is NFPA G-rated) for raising and lowering two-person loads. For the ID-L, 600 lbf. is the “design load-rating requirement” for NFPA 1983 General Use. There are also two other ID versions – one with a yellow/gold side plate (ID-S) that is designed for smaller diameter ropes; and a blue side plate version, which will handle ½” rope like the red side plate but with a 550 lbf. design load.

So, what is the design load? Typically, it is the amount of weight/force a device or a system can handle; or the load that it is designed to handle. Once it has met the design load requirement for NFPA, it is placed in an equipment category and tested accordingly. In the case of the ID, it is tested as a descent control device. According to NFPA, General Use descent control devices shall withstand a minimum test load of at least 22 k/N (4946 lbf) without failure. I know what you’re thinking, “Hey, that’s not anywhere near the 9000 lbf we’re used to hearing for General Use?” NFPA requires that rope and carabiners be rated at 8992 lbf with pulleys and some other auxiliary items at 8093 lbf. Rope grab device shall withstand a minimum test load of at least 11 k/N (2473 lbf) without sustaining permanent damage to the device or rope to meet General Use. So, there is a wide range of strength requirements in NFPA 1983 depending on what category an item is tested in.

You must also consider that NFPA 1983 is a manufacturer’s standard and provides strength requirements for equipment to be classified as (T)-Technical Use (300lbf working load) – or (G)-General Use (600lbf working load). Rescuers must also refer to the manufacturer’s recommendations for use. However, an NFPA 1983 G-rating provides a quick field reference to the working load and confirms that a piece of equipment has been tested accordingly. This is important because OSHA will most likely look at this if there is an incident.

To answer your question, the manufacturer (Petzl) allows the ID to be used for the lowering and raising of two-person loads. If you have any other questions or need more information, please let us know – we’ll be glad to help. We also hope to have other videos available soon!
read more 

Update: Question to OSHA on Individual Retrieval Lines

Tuesday, September 18, 2012

Report submitted by John Voinche', Sr. Vice President/COO, Roco Rescue

In July, a group of Roco instructors conducted a Confined Space Rope Rescue demonstration for OSHA representatives from Washington, DC. These agency officials represented both General Industry and Construction. This demo was used to clarify our concerns about a pending Letter of Interpretation (LOI) concerning Individual Retrieval Lines in confined spaces that was brought to our attention last year. Here is a little background…

Last July (2011), we brought you a story entitled, “What’s the talk about individual retrieval lines?”  At the heart of the issue was a pending LOI from OSHA regarding how retrieval lines are used inside confined spaces. [Note: This LOI is pending and has not been published in the Federal Register.]

Here’s the question to OSHA from a gentleman in Maryland which initiated the LOI…

“Does OSHA 1910-146 (k)(3) require that each individual entrant, including workers and/or rescuers, entering into a confined space be provided with an independent retrieval line or can more than one entrant be connected to a single retrieval line?”

The proposed answer from OSHA stated that each entrant should have an “individual” retrieval line, despite the fact that the word “individual” is not included in this section of the standard [1910.146 (k)(3)(i)].
Roco then wrote a letter to OSHA requesting clarification about the forthcoming LOI. A portion of our letter stated that, “This pending interpretation is different from our understanding of what’s required by the regulation. While this particular technique is one option of providing external retrieval, there are other alternatives currently being used by rescuers.”

One of the techniques being used is a “single retrieval line” for multiple entrant rescuers. The first rescuer to enter the space is attached to the retrieval line via an end-of-line Figure 8 on a Bight. Any subsequent rescuers enter the space attached to the same retrieval line using mid-line Butterfly knots. In our opinion, this satisfies the intent of the regulation in that each entrant is attached to a retrieval line.

However, in the case of multiple entrants, requiring “individual” lines as mentioned in the proposed LOI may represent an entanglement hazard. This, in effect, may cause entrants to opt out of using retrieval lines due to potential entanglement hazards (which is allowed by the standard if entanglement hazards are a concern). So, in our opinion, this effort to bring more clarity to the issue may further complicate the matter.
Again, we believe the single retrieval line method described above is one way to rescue entrants while satisfying the intent of the standard at the same time. More background is available by reading our original story.

Fast-forward back to July 2012… the demonstration lasted about four hours. During this time, Roco demonstrated numerous retrieval line techniques as well as the “pros and cons” for each system. There was a great deal of discussion back and forth on how this pending letter of interpretation could affect rescuers and entrants – and their ability to perform their jobs safely and efficiently.
We would like to thank OSHA for allowing us to offer our feedback concerning this topic. We also want to say a special thanks to the Baltimore Fire Department for allowing us to use their training facilities. We don’t know when a final LOI will be issued, but we will keep you posted!
read more 

Working Safer with JHA’s (Job Hazard Analyses)

Tuesday, August 14, 2012

By Roco Chief Instructor Pat Furr

A Job Hazard Analyses (JHA) is a very effective tool that most every employer should consider incorporating into their safety management program. This tool, otherwise known as a Job Safety Analyses (JSA) or Risk Assessment (RA) is a process that identifies workplace hazards, and then spells out means to eliminate, control, or provide protection to employees from the identified hazards. Once completed, the JHA can then be used as both a training tool and a pre-task safety checklist. There are a variety of formats that can be used to create an effective and logical JHA.

However, the JHA should become a living document that may require frequent updating as the work process, tools, work environment, safety legislation, and the workforce changes. Even if these factors do not change, the JHA should be reviewed periodically to ensure that it’s still current and still applicable to the job or task.

“The goal of the JHA is to identify workplace hazards and take corrective action BEFORE an incident occurs.”

The preparation of a JHA should be a collaborative effort between safety personnel and front line workers. It’s often the front-line worker who can provide valuable insight into the specific tasks involved as well as provide solutions to the most common hazards. Of course, it’s always vitally important to have a safety professional intimately involved with the process to ensure that input provided works hand-in-hand with established company policy and any legislated safety requirements. By involving front line workers, they will feel like they had valuable input to the process, which is very true by the way.

Whatever format that you choose, it’s important to develop your JHA in a logical, easy-to-use manner. Here are some guidelines:
1. Identify the hazards.

  • This may be obvious based on any history of accidents or near misses.
  • Interview front line workers to hear their concerns.
  • Evaluate the workplace to ensure it is in compliance with legislated and consensus safety standards.
  • Brainstorm with workers to dig deeper into the subtle or overlooked hazards. Break the work process down into individual steps or tasks to help uncover any obscure hazards.
2. Determine the consequences of exposure to the hazard and any contributing factors or triggers. It may be helpful to develop a ranking system based on a variety of factors.

  • Describe the likely outcome of exposure to the hazard.
  • Does the hazard have the potential to harm multiple employees?
  • How likely is the hazard to cause harm?
  • How quickly will exposure to the hazard cause harm?
  • Rank the hazards in terms of the most severe in order to determine which hazards must be given priority attention!
3. What protective measures are available to prevent the hazard from causing harm?

  • Can the hazard be eliminated?
  • Example: Eliminate fall hazards by bringing the work to the ground.
  • Can the hazard be controlled? Example: Install machine guards on rotating parts
  • Finally, if the hazard cannot be eliminated or controlled, what personal protective equipment (PPE) is required to protect the worker?
JHA’s can be very simple or very complex. The goal, however, is to find a balance between overburdening the worker with exhaustive paperwork and a document that is so lacking in detail that it is essentially useless. My experience is that the JHA should be just detailed enough to provide a succinct means to identify the hazards of the task, or the various steps of the task, predict the consequences of exposure to the hazard, and to provide a hierarchical means to protect the worker from the hazard. I like to keep the JHA simple and concise as it tends to encourage the worker to think into the situation and make – for lack of a better term- a “real time evaluation of the hazard.”

Remember, the JHA (JSA, RA) should be considered a living document that is updated to reflect any changes. It should also be an easy-to-use tool that workers and management can employ to identify hazards, rank the hazards in terms of their potential consequences, and provide an escalating hierarchy to abate the identified hazards. These documents should also be retained for a period of time because they may be useful in investigating any accidents after the fact.

Workers are injured every day on the job. JHA’s can be very useful for discovering, preventing or even eliminating some hazards from your workplace. At minimum, the process is likely to result in fewer injuries, more effective work methods, and increased worker productivity. What’s more, a simple, step-by-step JHA can be a valuable tool in training new workers to do their jobs more safely and effectively.
read more 

Previous Next
1 .. 30 31 32 33 34 .. 60

RescueTalk ( has been created as a free resource for sharing insightful information, news, views and commentary for our students and others who are interested in technical rope rescue. Therefore, we make no representations as to accuracy, completeness, or suitability of any information and are not liable for any errors, omissions, or delays in this information or any losses, injuries, or damages arising from its display or use. All information is provided on an as-is basis. Users and readers are 100% responsible for their own actions in every situation. Information presented on this website in no way replaces proper training!